Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
7 |
|
subgruhgrfun |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝑆 ) ) |
10 |
9
|
funfnd |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
11 |
|
simplrr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UHGraph ) |
12 |
|
simplrl |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) |
13 |
|
simpr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) |
14 |
1 3 11 12 13
|
subgruhgredgd |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
16 |
|
fnfvrnss |
⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
18 |
|
df-f |
⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
19 |
10 17 18
|
sylanbrc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
20 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
21 |
1 3
|
isuhgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
23 |
20 22
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
26 |
19 25
|
mpbird |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → 𝑆 ∈ UHGraph ) |
27 |
26
|
ex |
⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → 𝑆 ∈ UHGraph ) ) |
28 |
6 27
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → 𝑆 ∈ UHGraph ) ) |
29 |
28
|
anabsi8 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UHGraph ) |