Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
7 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
8 |
|
subgruhgrfun |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
11 |
10
|
funfnd |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) → ( ♯ ‘ 𝑒 ) = ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
14 |
13
|
breq1d |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) → ( ( ♯ ‘ 𝑒 ) ≤ 2 ↔ ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
15 |
7
|
anim2i |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) |
17 |
16
|
ancomd |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) ) |
18 |
17
|
anim1i |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) ) |
19 |
18
|
simplld |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UHGraph ) |
20 |
|
simpl |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 SubGraph 𝐺 ) |
21 |
20
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → 𝑆 SubGraph 𝐺 ) |
22 |
21
|
adantr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) |
23 |
|
simpr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) |
24 |
1 3 19 22 23
|
subgruhgredgd |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
25 |
4
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
26 |
7 25
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
27 |
26
|
ad2antll |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
29 |
|
simpll2 |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) |
30 |
|
funssfv |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) |
31 |
28 29 23 30
|
syl3anc |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) |
32 |
31
|
eqcomd |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
33 |
32
|
fveq2d |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
34 |
|
subgreldmiedg |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) |
35 |
34
|
ex |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
38 |
|
simpr |
⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → 𝐺 ∈ UPGraph ) |
39 |
26
|
funfnd |
⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
41 |
|
simpl |
⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) |
42 |
2 4
|
upgrle |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
43 |
38 40 41 42
|
syl3anc |
⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
44 |
43
|
expcom |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
45 |
44
|
ad2antll |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
46 |
37 45
|
syld |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
47 |
46
|
imp |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
48 |
33 47
|
eqbrtrd |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ≤ 2 ) |
49 |
14 24 48
|
elrabd |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
50 |
49
|
ralrimiva |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
51 |
|
fnfvrnss |
⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
52 |
12 50 51
|
syl2anc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
53 |
|
df-f |
⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
54 |
12 52 53
|
sylanbrc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
55 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
56 |
1 3
|
isupgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
58 |
55 57
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
60 |
59
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
61 |
54 60
|
mpbird |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → 𝑆 ∈ UPGraph ) |
62 |
61
|
ex |
⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 ∈ UPGraph ) ) |
63 |
6 62
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 ∈ UPGraph ) ) |
64 |
63
|
anabsi8 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UPGraph ) |