Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
7 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
8 |
|
subgruhgrfun |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
11 |
10
|
funfnd |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
13 |
|
simplrl |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) |
14 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
15 |
14
|
adantl |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ UMGraph ) |
16 |
15
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ UMGraph ) |
17 |
16
|
adantr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UMGraph ) |
18 |
|
simpr |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) |
19 |
1 3
|
subumgredg2 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
20 |
13 17 18 19
|
syl3anc |
⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
21 |
20
|
ralrimiva |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
22 |
|
fnfvrnss |
⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
23 |
12 21 22
|
syl2anc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
24 |
|
df-f |
⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
25 |
12 23 24
|
sylanbrc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
26 |
|
simp2 |
⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) |
27 |
2 4
|
usgrfs |
⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ) |
28 |
|
df-f1 |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
29 |
|
ffun |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } → Fun ( iEdg ‘ 𝐺 ) ) |
30 |
29
|
anim1i |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
31 |
28 30
|
sylbi |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
32 |
27 31
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
34 |
26 33
|
anim12ci |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
35 |
|
df-3an |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ↔ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
37 |
|
f1ssf1 |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) → Fun ◡ ( iEdg ‘ 𝑆 ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → Fun ◡ ( iEdg ‘ 𝑆 ) ) |
39 |
|
df-f1 |
⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝑆 ) ) ) |
40 |
25 38 39
|
sylanbrc |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
41 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
42 |
1 3
|
isusgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
44 |
41 43
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
47 |
40 46
|
mpbird |
⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → 𝑆 ∈ USGraph ) |
48 |
47
|
ex |
⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝑆 ∈ USGraph ) ) |
49 |
6 48
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝑆 ∈ USGraph ) ) |
50 |
49
|
anabsi8 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ USGraph ) |