Metamath Proof Explorer


Theorem suc0

Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion suc0 suc ∅ = { ∅ }

Proof

Step Hyp Ref Expression
1 df-suc suc ∅ = ( ∅ ∪ { ∅ } )
2 uncom ( ∅ ∪ { ∅ } ) = ( { ∅ } ∪ ∅ )
3 un0 ( { ∅ } ∪ ∅ ) = { ∅ }
4 1 2 3 3eqtri suc ∅ = { ∅ }