| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 2 |  | ordn2lp | ⊢ ( Ord  𝐴  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐴 ) ) | 
						
							| 3 |  | pm3.13 | ⊢ ( ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐴 )  →  ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴  ∈  On  →  ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 6 |  | eqimss | ⊢ ( suc  𝐴  =  suc  𝐵  →  suc  𝐴  ⊆  suc  𝐵 ) | 
						
							| 7 |  | sucssel | ⊢ ( 𝐴  ∈  On  →  ( suc  𝐴  ⊆  suc  𝐵  →  𝐴  ∈  suc  𝐵 ) ) | 
						
							| 8 | 6 7 | syl5 | ⊢ ( 𝐴  ∈  On  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  ∈  suc  𝐵 ) ) | 
						
							| 9 |  | elsuci | ⊢ ( 𝐴  ∈  suc  𝐵  →  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) | 
						
							| 10 | 9 | ord | ⊢ ( 𝐴  ∈  suc  𝐵  →  ( ¬  𝐴  ∈  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( ¬  𝐴  ∈  𝐵  →  ( 𝐴  ∈  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 12 | 8 11 | syl9 | ⊢ ( 𝐴  ∈  On  →  ( ¬  𝐴  ∈  𝐵  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 13 |  | eqimss2 | ⊢ ( suc  𝐴  =  suc  𝐵  →  suc  𝐵  ⊆  suc  𝐴 ) | 
						
							| 14 |  | sucssel | ⊢ ( 𝐵  ∈  On  →  ( suc  𝐵  ⊆  suc  𝐴  →  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 15 | 13 14 | syl5 | ⊢ ( 𝐵  ∈  On  →  ( suc  𝐴  =  suc  𝐵  →  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 16 |  | elsuci | ⊢ ( 𝐵  ∈  suc  𝐴  →  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) | 
						
							| 17 | 16 | ord | ⊢ ( 𝐵  ∈  suc  𝐴  →  ( ¬  𝐵  ∈  𝐴  →  𝐵  =  𝐴 ) ) | 
						
							| 18 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 19 | 17 18 | imbitrdi | ⊢ ( 𝐵  ∈  suc  𝐴  →  ( ¬  𝐵  ∈  𝐴  →  𝐴  =  𝐵 ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( ¬  𝐵  ∈  𝐴  →  ( 𝐵  ∈  suc  𝐴  →  𝐴  =  𝐵 ) ) | 
						
							| 21 | 15 20 | syl9 | ⊢ ( 𝐵  ∈  On  →  ( ¬  𝐵  ∈  𝐴  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 22 | 12 21 | jaao | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 23 | 5 22 | mpd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 24 |  | suceq | ⊢ ( 𝐴  =  𝐵  →  suc  𝐴  =  suc  𝐵 ) | 
						
							| 25 | 23 24 | impbid1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  𝐴  =  suc  𝐵  ↔  𝐴  =  𝐵 ) ) |