| Step | Hyp | Ref | Expression | 
						
							| 1 |  | en2lp | ⊢ ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐴 ) | 
						
							| 2 |  | ianor | ⊢ ( ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 ) | 
						
							| 4 |  | sucidg | ⊢ ( 𝐴  ∈  V  →  𝐴  ∈  suc  𝐴 ) | 
						
							| 5 |  | eleq2 | ⊢ ( suc  𝐴  =  suc  𝐵  →  ( 𝐴  ∈  suc  𝐴  ↔  𝐴  ∈  suc  𝐵 ) ) | 
						
							| 6 | 4 5 | syl5ibcom | ⊢ ( 𝐴  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  ∈  suc  𝐵 ) ) | 
						
							| 7 |  | elsucg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  suc  𝐵  ↔  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 8 | 6 7 | sylibd | ⊢ ( 𝐴  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝐴  ∈  V  ∧  suc  𝐴  =  suc  𝐵 )  →  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) | 
						
							| 10 | 9 | ord | ⊢ ( ( 𝐴  ∈  V  ∧  suc  𝐴  =  suc  𝐵 )  →  ( ¬  𝐴  ∈  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝐴  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  ( ¬  𝐴  ∈  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( 𝐴  ∈  V  →  ( ¬  𝐴  ∈  𝐵  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 13 |  | sucidg | ⊢ ( 𝐵  ∈  V  →  𝐵  ∈  suc  𝐵 ) | 
						
							| 14 |  | eleq2 | ⊢ ( suc  𝐴  =  suc  𝐵  →  ( 𝐵  ∈  suc  𝐴  ↔  𝐵  ∈  suc  𝐵 ) ) | 
						
							| 15 | 13 14 | syl5ibrcom | ⊢ ( 𝐵  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 16 |  | elsucg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  suc  𝐴  ↔  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) ) | 
						
							| 17 | 15 16 | sylibd | ⊢ ( 𝐵  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝐵  ∈  V  ∧  suc  𝐴  =  suc  𝐵 )  →  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) | 
						
							| 19 | 18 | ord | ⊢ ( ( 𝐵  ∈  V  ∧  suc  𝐴  =  suc  𝐵 )  →  ( ¬  𝐵  ∈  𝐴  →  𝐵  =  𝐴 ) ) | 
						
							| 20 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 21 | 19 20 | imbitrdi | ⊢ ( ( 𝐵  ∈  V  ∧  suc  𝐴  =  suc  𝐵 )  →  ( ¬  𝐵  ∈  𝐴  →  𝐴  =  𝐵 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐵  ∈  V  →  ( suc  𝐴  =  suc  𝐵  →  ( ¬  𝐵  ∈  𝐴  →  𝐴  =  𝐵 ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( 𝐵  ∈  V  →  ( ¬  𝐵  ∈  𝐴  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 24 | 12 23 | jaao | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ( ¬  𝐴  ∈  𝐵  ∨  ¬  𝐵  ∈  𝐴 )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 25 | 3 24 | mpi | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 26 |  | sucexb | ⊢ ( 𝐴  ∈  V  ↔  suc  𝐴  ∈  V ) | 
						
							| 27 |  | sucexb | ⊢ ( 𝐵  ∈  V  ↔  suc  𝐵  ∈  V ) | 
						
							| 28 | 27 | notbii | ⊢ ( ¬  𝐵  ∈  V  ↔  ¬  suc  𝐵  ∈  V ) | 
						
							| 29 |  | nelneq | ⊢ ( ( suc  𝐴  ∈  V  ∧  ¬  suc  𝐵  ∈  V )  →  ¬  suc  𝐴  =  suc  𝐵 ) | 
						
							| 30 | 26 28 29 | syl2anb | ⊢ ( ( 𝐴  ∈  V  ∧  ¬  𝐵  ∈  V )  →  ¬  suc  𝐴  =  suc  𝐵 ) | 
						
							| 31 | 30 | pm2.21d | ⊢ ( ( 𝐴  ∈  V  ∧  ¬  𝐵  ∈  V )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 32 |  | eqcom | ⊢ ( suc  𝐴  =  suc  𝐵  ↔  suc  𝐵  =  suc  𝐴 ) | 
						
							| 33 | 26 | notbii | ⊢ ( ¬  𝐴  ∈  V  ↔  ¬  suc  𝐴  ∈  V ) | 
						
							| 34 |  | nelneq | ⊢ ( ( suc  𝐵  ∈  V  ∧  ¬  suc  𝐴  ∈  V )  →  ¬  suc  𝐵  =  suc  𝐴 ) | 
						
							| 35 | 27 33 34 | syl2anb | ⊢ ( ( 𝐵  ∈  V  ∧  ¬  𝐴  ∈  V )  →  ¬  suc  𝐵  =  suc  𝐴 ) | 
						
							| 36 | 35 | ancoms | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ¬  suc  𝐵  =  suc  𝐴 ) | 
						
							| 37 | 36 | pm2.21d | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( suc  𝐵  =  suc  𝐴  →  𝐴  =  𝐵 ) ) | 
						
							| 38 | 32 37 | biimtrid | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 39 |  | sucprc | ⊢ ( ¬  𝐴  ∈  V  →  suc  𝐴  =  𝐴 ) | 
						
							| 40 |  | sucprc | ⊢ ( ¬  𝐵  ∈  V  →  suc  𝐵  =  𝐵 ) | 
						
							| 41 | 39 40 | eqeqan12d | ⊢ ( ( ¬  𝐴  ∈  V  ∧  ¬  𝐵  ∈  V )  →  ( suc  𝐴  =  suc  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 42 | 41 | biimpd | ⊢ ( ( ¬  𝐴  ∈  V  ∧  ¬  𝐵  ∈  V )  →  ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 43 | 25 31 38 42 | 4cases | ⊢ ( suc  𝐴  =  suc  𝐵  →  𝐴  =  𝐵 ) | 
						
							| 44 |  | suceq | ⊢ ( 𝐴  =  𝐵  →  suc  𝐴  =  suc  𝐵 ) | 
						
							| 45 | 43 44 | impbii | ⊢ ( suc  𝐴  =  suc  𝐵  ↔  𝐴  =  𝐵 ) |