Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sucdom | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucdom2 | ⊢ ( 𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵 ) | |
2 | php4 | ⊢ ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 ) | |
3 | sdomdomtr | ⊢ ( ( 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
4 | 3 | ex | ⊢ ( 𝐴 ≺ suc 𝐴 → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
5 | 2 4 | syl | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
6 | 1 5 | impbid2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) |