Metamath Proof Explorer


Theorem sucel

Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004)

Ref Expression
Assertion sucel ( suc 𝐴𝐵 ↔ ∃ 𝑥𝐵𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 risset ( suc 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = suc 𝐴 )
2 dfcleq ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ suc 𝐴 ) )
3 vex 𝑦 ∈ V
4 3 elsuc ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) )
5 4 bibi2i ( ( 𝑦𝑥𝑦 ∈ suc 𝐴 ) ↔ ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )
6 5 albii ( ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ suc 𝐴 ) ↔ ∀ 𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )
7 2 6 bitri ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )
8 7 rexbii ( ∃ 𝑥𝐵 𝑥 = suc 𝐴 ↔ ∃ 𝑥𝐵𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )
9 1 8 bitri ( suc 𝐴𝐵 ↔ ∃ 𝑥𝐵𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) ) )