Step |
Hyp |
Ref |
Expression |
1 |
|
risset |
⊢ ( suc 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ) |
2 |
|
dfcleq |
⊢ ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
3
|
elsuc |
⊢ ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
5 |
4
|
bibi2i |
⊢ ( ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
7 |
2 6
|
bitri |
⊢ ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
9 |
1 8
|
bitri |
⊢ ( suc 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |