Metamath Proof Explorer


Theorem suceq

Description: Equality of successors. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion suceq ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 = 𝐵𝐴 = 𝐵 )
2 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
3 1 2 uneq12d ( 𝐴 = 𝐵 → ( 𝐴 ∪ { 𝐴 } ) = ( 𝐵 ∪ { 𝐵 } ) )
4 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
5 df-suc suc 𝐵 = ( 𝐵 ∪ { 𝐵 } )
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 )