Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | suceqsneq | ⊢ ( 𝐴 ∈ 𝑉 → ( suc 𝐴 = suc 𝐵 ↔ { 𝐴 } = { 𝐵 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suc11reg | ⊢ ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) | |
2 | sneqbg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
3 | 1 2 | bitr4id | ⊢ ( 𝐴 ∈ 𝑉 → ( suc 𝐴 = suc 𝐵 ↔ { 𝐴 } = { 𝐵 } ) ) |