Metamath Proof Explorer


Theorem sucex

Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis sucex.1 𝐴 ∈ V
Assertion sucex suc 𝐴 ∈ V

Proof

Step Hyp Ref Expression
1 sucex.1 𝐴 ∈ V
2 sucexg ( 𝐴 ∈ V → suc 𝐴 ∈ V )
3 1 2 ax-mp suc 𝐴 ∈ V