Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexb | ⊢ ( ( 𝐴 ∈ V ∧ { 𝐴 } ∈ V ) ↔ ( 𝐴 ∪ { 𝐴 } ) ∈ V ) | |
| 2 | snex | ⊢ { 𝐴 } ∈ V | |
| 3 | 2 | biantru | ⊢ ( 𝐴 ∈ V ↔ ( 𝐴 ∈ V ∧ { 𝐴 } ∈ V ) ) |
| 4 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 5 | 4 | eleq1i | ⊢ ( suc 𝐴 ∈ V ↔ ( 𝐴 ∪ { 𝐴 } ) ∈ V ) |
| 6 | 1 3 5 | 3bitr4i | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |