Metamath Proof Explorer


Theorem sucexeloni

Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion sucexeloni ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → suc 𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 ordsuci ( Ord 𝐴 → Ord suc 𝐴 )
3 1 2 syl ( 𝐴 ∈ On → Ord suc 𝐴 )
4 elex ( suc 𝐴𝑉 → suc 𝐴 ∈ V )
5 elong ( suc 𝐴 ∈ V → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) )
6 5 biimparc ( ( Ord suc 𝐴 ∧ suc 𝐴 ∈ V ) → suc 𝐴 ∈ On )
7 3 4 6 syl2an ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → suc 𝐴 ∈ On )