| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onelss | ⊢ ( 𝐴  ∈  On  →  ( 𝑥  ∈  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 2 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐴 }  ↔  𝑥  =  𝐴 ) | 
						
							| 3 |  | eqimss | ⊢ ( 𝑥  =  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( 𝑥  ∈  { 𝐴 }  →  𝑥  ⊆  𝐴 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  On  →  ( 𝑥  ∈  { 𝐴 }  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 6 | 1 5 | orim12d | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  { 𝐴 } )  →  ( 𝑥  ⊆  𝐴  ∨  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 7 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 8 | 7 | eleq2i | ⊢ ( 𝑥  ∈  suc  𝐴  ↔  𝑥  ∈  ( 𝐴  ∪  { 𝐴 } ) ) | 
						
							| 9 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  { 𝐴 } )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  { 𝐴 } ) ) | 
						
							| 10 | 8 9 | bitr2i | ⊢ ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  { 𝐴 } )  ↔  𝑥  ∈  suc  𝐴 ) | 
						
							| 11 |  | oridm | ⊢ ( ( 𝑥  ⊆  𝐴  ∨  𝑥  ⊆  𝐴 )  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 12 | 6 10 11 | 3imtr3g | ⊢ ( 𝐴  ∈  On  →  ( 𝑥  ∈  suc  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 13 |  | sssucid | ⊢ 𝐴  ⊆  suc  𝐴 | 
						
							| 14 |  | sstr2 | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝐴  ⊆  suc  𝐴  →  𝑥  ⊆  suc  𝐴 ) ) | 
						
							| 15 | 12 13 14 | syl6mpi | ⊢ ( 𝐴  ∈  On  →  ( 𝑥  ∈  suc  𝐴  →  𝑥  ⊆  suc  𝐴 ) ) | 
						
							| 16 | 15 | ralrimiv | ⊢ ( 𝐴  ∈  On  →  ∀ 𝑥  ∈  suc  𝐴 𝑥  ⊆  suc  𝐴 ) | 
						
							| 17 |  | dftr3 | ⊢ ( Tr  suc  𝐴  ↔  ∀ 𝑥  ∈  suc  𝐴 𝑥  ⊆  suc  𝐴 ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( 𝐴  ∈  On  →  Tr  suc  𝐴 ) | 
						
							| 19 |  | onss | ⊢ ( 𝐴  ∈  On  →  𝐴  ⊆  On ) | 
						
							| 20 |  | snssi | ⊢ ( 𝐴  ∈  On  →  { 𝐴 }  ⊆  On ) | 
						
							| 21 | 19 20 | unssd | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∪  { 𝐴 } )  ⊆  On ) | 
						
							| 22 | 7 21 | eqsstrid | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  ⊆  On ) | 
						
							| 23 |  | ordon | ⊢ Ord  On | 
						
							| 24 |  | trssord | ⊢ ( ( Tr  suc  𝐴  ∧  suc  𝐴  ⊆  On  ∧  Ord  On )  →  Ord  suc  𝐴 ) | 
						
							| 25 | 24 | 3exp | ⊢ ( Tr  suc  𝐴  →  ( suc  𝐴  ⊆  On  →  ( Ord  On  →  Ord  suc  𝐴 ) ) ) | 
						
							| 26 | 23 25 | mpii | ⊢ ( Tr  suc  𝐴  →  ( suc  𝐴  ⊆  On  →  Ord  suc  𝐴 ) ) | 
						
							| 27 | 18 22 26 | sylc | ⊢ ( 𝐴  ∈  On  →  Ord  suc  𝐴 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝐴  ∈  𝑉 )  →  Ord  suc  𝐴 ) | 
						
							| 29 |  | elong | ⊢ ( suc  𝐴  ∈  𝑉  →  ( suc  𝐴  ∈  On  ↔  Ord  suc  𝐴 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝐴  ∈  𝑉 )  →  ( suc  𝐴  ∈  On  ↔  Ord  suc  𝐴 ) ) | 
						
							| 31 | 28 30 | mpbird | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝐴  ∈  𝑉 )  →  suc  𝐴  ∈  On ) |