Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucprc | ⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 2 | 1 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 3 | 2 | uneq2d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∪ { 𝐴 } ) = ( 𝐴 ∪ ∅ ) ) |
| 4 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 5 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 6 | 5 | eqcomi | ⊢ 𝐴 = ( 𝐴 ∪ ∅ ) |
| 7 | 3 4 6 | 3eqtr4g | ⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) |