Metamath Proof Explorer


Theorem sucprcreg

Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004) (Proof shortened by BJ, 16-Apr-2019)

Ref Expression
Assertion sucprcreg ( ¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴 )

Proof

Step Hyp Ref Expression
1 sucprc ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 )
2 elirr ¬ 𝐴𝐴
3 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
4 3 eqeq1i ( suc 𝐴 = 𝐴 ↔ ( 𝐴 ∪ { 𝐴 } ) = 𝐴 )
5 ssequn2 ( { 𝐴 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝐴 } ) = 𝐴 )
6 4 5 sylbb2 ( suc 𝐴 = 𝐴 → { 𝐴 } ⊆ 𝐴 )
7 snidg ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } )
8 ssel2 ( ( { 𝐴 } ⊆ 𝐴𝐴 ∈ { 𝐴 } ) → 𝐴𝐴 )
9 6 7 8 syl2an ( ( suc 𝐴 = 𝐴𝐴 ∈ V ) → 𝐴𝐴 )
10 2 9 mto ¬ ( suc 𝐴 = 𝐴𝐴 ∈ V )
11 10 imnani ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V )
12 1 11 impbii ( ¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴 )