Step |
Hyp |
Ref |
Expression |
1 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
2 |
|
id |
⊢ ( Tr 𝐴 → Tr 𝐴 ) |
3 |
|
id |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
6 |
|
id |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) |
7 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
8 |
7
|
3impib |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
9 |
2 5 6 8
|
syl3an |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
10 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ suc 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
11 |
1 9 10
|
eel0321old |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
12 |
11
|
3expia |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
13 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
14 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) |
15 |
14
|
biimpac |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
16 |
5 13 15
|
syl2an |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
17 |
1 16 10
|
eel021old |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
18 |
17
|
ex |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
19 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
20 |
3 19
|
syl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
21 |
|
elsuci |
⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
23 |
|
jao |
⊢ ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) ) |
24 |
23
|
3imp |
⊢ ( ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
25 |
12 18 22 24
|
eel2122old |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
26 |
25
|
ex |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
27 |
26
|
alrimivv |
⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
28 |
|
dftr2 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
29 |
28
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) |
30 |
27 29
|
syl |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
31 |
30
|
iin1 |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |