Metamath Proof Explorer


Theorem suctrALTcfVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf is suctrALTcfVD without virtual deductions and was derived automatically from suctrALTcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. Tr A ->. Tr A ).
2:: |- (. ......... ( z e. y /\ y e. suc A ) ->. ( z e. y /\ y e. suc A ) ).
3:2: |- (. ......... ( z e. y /\ y e. suc A ) ->. z e. y ).
4:: |- (. ................................... ....... y e. A ->. y e. A ).
5:1,3,4: |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. A ).
6:: |- A C_ suc A
7:5,6: |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. suc A ).
8:7: |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. ( y e. A -> z e. suc A ) ).
9:: |- (. ................................... ...... y = A ->. y = A ).
10:3,9: |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. A ).
11:10,6: |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. suc A ).
12:11: |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y = A -> z e. suc A ) ).
13:2: |- (. .......... ( z e. y /\ y e. suc A ) ->. y e. suc A ).
14:13: |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y e. A \/ y = A ) ).
15:8,12,14: |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. z e. suc A ).
16:15: |- (. Tr A ->. ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ).
17:16: |- (. Tr A ->. A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ).
18:17: |- (. Tr A ->. Tr suc A ).
qed:18: |- ( Tr A -> Tr suc A )

Ref Expression
Assertion suctrALTcfVD ( Tr 𝐴 → Tr suc 𝐴 )

Proof

Step Hyp Ref Expression
1 sssucid 𝐴 ⊆ suc 𝐴
2 idn1 (    Tr 𝐴    ▶    Tr 𝐴    )
3 idn1 (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    )
4 simpl ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧𝑦 )
5 3 4 el1 (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    𝑧𝑦    )
6 idn1 (    𝑦𝐴    ▶    𝑦𝐴    )
7 trel ( Tr 𝐴 → ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
8 7 3impib ( ( Tr 𝐴𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 )
9 2 5 6 8 el123 (    (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦𝐴    )    ▶    𝑧𝐴    )
10 ssel2 ( ( 𝐴 ⊆ suc 𝐴𝑧𝐴 ) → 𝑧 ∈ suc 𝐴 )
11 1 9 10 el0321old (    (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦𝐴    )    ▶    𝑧 ∈ suc 𝐴    )
12 11 int3 (    (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    )    ▶    ( 𝑦𝐴𝑧 ∈ suc 𝐴 )    )
13 idn1 (    𝑦 = 𝐴    ▶    𝑦 = 𝐴    )
14 eleq2 ( 𝑦 = 𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
15 14 biimpac ( ( 𝑧𝑦𝑦 = 𝐴 ) → 𝑧𝐴 )
16 5 13 15 el12 (    (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦 = 𝐴    )    ▶    𝑧𝐴    )
17 1 16 10 el021old (    (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦 = 𝐴    )    ▶    𝑧 ∈ suc 𝐴    )
18 17 int2 (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 )    )
19 simpr ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 )
20 3 19 el1 (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    𝑦 ∈ suc 𝐴    )
21 elsuci ( 𝑦 ∈ suc 𝐴 → ( 𝑦𝐴𝑦 = 𝐴 ) )
22 20 21 el1 (    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑦𝐴𝑦 = 𝐴 )    )
23 jao ( ( 𝑦𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦𝐴𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) )
24 23 3imp ( ( ( 𝑦𝐴𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦𝐴𝑦 = 𝐴 ) ) → 𝑧 ∈ suc 𝐴 )
25 12 18 22 24 el2122old (    (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    )    ▶    𝑧 ∈ suc 𝐴    )
26 25 int2 (    Tr 𝐴    ▶    ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 )    )
27 26 gen12 (    Tr 𝐴    ▶   𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 )    )
28 dftr2 ( Tr suc 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
29 28 biimpri ( ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 )
30 27 29 el1 (    Tr 𝐴    ▶    Tr suc 𝐴    )
31 30 in1 ( Tr 𝐴 → Tr suc 𝐴 )