| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 2 |
|
relsdom |
⊢ Rel ≺ |
| 3 |
2
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 4 |
|
1on |
⊢ 1o ∈ On |
| 5 |
|
xpsneng |
⊢ ( ( 𝐴 ∈ V ∧ 1o ∈ On ) → ( 𝐴 × { 1o } ) ≈ 𝐴 ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 × { 1o } ) ≈ 𝐴 ) |
| 7 |
6
|
ensymd |
⊢ ( 1o ≺ 𝐴 → 𝐴 ≈ ( 𝐴 × { 1o } ) ) |
| 8 |
|
endom |
⊢ ( 𝐴 ≈ ( 𝐴 × { 1o } ) → 𝐴 ≼ ( 𝐴 × { 1o } ) ) |
| 9 |
7 8
|
syl |
⊢ ( 1o ≺ 𝐴 → 𝐴 ≼ ( 𝐴 × { 1o } ) ) |
| 10 |
|
ensn1g |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) |
| 11 |
3 10
|
syl |
⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≈ 1o ) |
| 12 |
|
ensdomtr |
⊢ ( ( { 𝐴 } ≈ 1o ∧ 1o ≺ 𝐴 ) → { 𝐴 } ≺ 𝐴 ) |
| 13 |
11 12
|
mpancom |
⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≺ 𝐴 ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
|
xpsneng |
⊢ ( ( 𝐴 ∈ V ∧ ∅ ∈ V ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 16 |
3 14 15
|
sylancl |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 17 |
16
|
ensymd |
⊢ ( 1o ≺ 𝐴 → 𝐴 ≈ ( 𝐴 × { ∅ } ) ) |
| 18 |
|
sdomentr |
⊢ ( ( { 𝐴 } ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → { 𝐴 } ≺ ( 𝐴 × { ∅ } ) ) |
| 19 |
13 17 18
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≺ ( 𝐴 × { ∅ } ) ) |
| 20 |
|
sdomdom |
⊢ ( { 𝐴 } ≺ ( 𝐴 × { ∅ } ) → { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) |
| 21 |
19 20
|
syl |
⊢ ( 1o ≺ 𝐴 → { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) |
| 22 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 23 |
|
xpsndisj |
⊢ ( 1o ≠ ∅ → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 24 |
22 23
|
mp1i |
⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) |
| 25 |
|
undom |
⊢ ( ( ( 𝐴 ≼ ( 𝐴 × { 1o } ) ∧ { 𝐴 } ≼ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∩ ( 𝐴 × { ∅ } ) ) = ∅ ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) |
| 26 |
9 21 24 25
|
syl21anc |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ) |
| 27 |
|
sdomentr |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { 1o } ) ) → 1o ≺ ( 𝐴 × { 1o } ) ) |
| 28 |
7 27
|
mpdan |
⊢ ( 1o ≺ 𝐴 → 1o ≺ ( 𝐴 × { 1o } ) ) |
| 29 |
|
sdomentr |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 × { ∅ } ) ) → 1o ≺ ( 𝐴 × { ∅ } ) ) |
| 30 |
17 29
|
mpdan |
⊢ ( 1o ≺ 𝐴 → 1o ≺ ( 𝐴 × { ∅ } ) ) |
| 31 |
|
unxpdom |
⊢ ( ( 1o ≺ ( 𝐴 × { 1o } ) ∧ 1o ≺ ( 𝐴 × { ∅ } ) ) → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 32 |
28 30 31
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 33 |
|
domtr |
⊢ ( ( ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) ∪ ( 𝐴 × { ∅ } ) ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 34 |
26 32 33
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ) |
| 35 |
|
xpen |
⊢ ( ( ( 𝐴 × { 1o } ) ≈ 𝐴 ∧ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) |
| 36 |
6 16 35
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) |
| 37 |
|
domentr |
⊢ ( ( ( 𝐴 ∪ { 𝐴 } ) ≼ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ∧ ( ( 𝐴 × { 1o } ) × ( 𝐴 × { ∅ } ) ) ≈ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 38 |
34 36 37
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 39 |
1 38
|
eqbrtrid |
⊢ ( 1o ≺ 𝐴 → suc 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |