Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
2 |
|
1z |
⊢ 1 ∈ ℤ |
3 |
2
|
a1i |
⊢ ( ⊤ → 1 ∈ ℤ ) |
4 |
|
0ss |
⊢ ∅ ⊆ ℕ |
5 |
4
|
a1i |
⊢ ( ⊤ → ∅ ⊆ ℕ ) |
6 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
7 |
6 1
|
eleqtrdi |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
8 |
|
c0ex |
⊢ 0 ∈ V |
9 |
8
|
fvconst2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
10 |
7 9
|
syl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
11 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
12 |
11
|
iffalsei |
⊢ if ( 𝑘 ∈ ∅ , 𝐴 , 0 ) = 0 |
13 |
10 12
|
eqtr4di |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ ∅ , 𝐴 , 0 ) ) |
14 |
11
|
pm2.21i |
⊢ ( 𝑘 ∈ ∅ → 𝐴 ∈ ℂ ) |
15 |
14
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ∅ ) → 𝐴 ∈ ℂ ) |
16 |
1 3 5 13 15
|
zsum |
⊢ ( ⊤ → Σ 𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) ) |
17 |
16
|
mptru |
⊢ Σ 𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
18 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
19 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
20 |
18 19
|
ax-mp |
⊢ Fun ⇝ |
21 |
|
serclim0 |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) |
22 |
2 21
|
ax-mp |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 |
23 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 → ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) = 0 ) ) |
24 |
20 22 23
|
mp2 |
⊢ ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) = 0 |
25 |
17 24
|
eqtri |
⊢ Σ 𝑘 ∈ ∅ 𝐴 = 0 |