| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 2 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( ⊤  →  1  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ℕ  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( ⊤  →  ∅  ⊆  ℕ )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eleqtrdi | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 9 | 
							
								8
							 | 
							fvconst2 | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							syl | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 11 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑘  ∈  ∅  | 
						
						
							| 12 | 
							
								11
							 | 
							iffalsei | 
							⊢ if ( 𝑘  ∈  ∅ ,  𝐴 ,  0 )  =  0  | 
						
						
							| 13 | 
							
								10 12
							 | 
							eqtr4di | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ∅ ,  𝐴 ,  0 ) )  | 
						
						
							| 14 | 
							
								11
							 | 
							pm2.21i | 
							⊢ ( 𝑘  ∈  ∅  →  𝐴  ∈  ℂ )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ∅ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 16 | 
							
								1 3 5 13 15
							 | 
							zsum | 
							⊢ ( ⊤  →  Σ 𝑘  ∈  ∅ 𝐴  =  (  ⇝  ‘ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mptru | 
							⊢ Σ 𝑘  ∈  ∅ 𝐴  =  (  ⇝  ‘ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fclim | 
							⊢  ⇝  : dom   ⇝  ⟶ ℂ  | 
						
						
							| 19 | 
							
								
							 | 
							ffun | 
							⊢ (  ⇝  : dom   ⇝  ⟶ ℂ  →  Fun   ⇝  )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ax-mp | 
							⊢ Fun   ⇝   | 
						
						
							| 21 | 
							
								
							 | 
							serclim0 | 
							⊢ ( 1  ∈  ℤ  →  seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0 )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							ax-mp | 
							⊢ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0  | 
						
						
							| 23 | 
							
								
							 | 
							funbrfv | 
							⊢ ( Fun   ⇝   →  ( seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0  →  (  ⇝  ‘ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ) )  =  0 ) )  | 
						
						
							| 24 | 
							
								20 22 23
							 | 
							mp2 | 
							⊢ (  ⇝  ‘ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) ) )  =  0  | 
						
						
							| 25 | 
							
								17 24
							 | 
							eqtri | 
							⊢ Σ 𝑘  ∈  ∅ 𝐴  =  0  |