Metamath Proof Explorer


Theorem sumeq1d

Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005)

Ref Expression
Hypothesis sumeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion sumeq1d ( 𝜑 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 sumeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 sumeq1 ( 𝐴 = 𝐵 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐶 )
3 1 2 syl ( 𝜑 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐶 )