Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumeq2 | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐵 = 𝐶 → ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) |
| 3 | sumeq2ii | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐶 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐶 ) |