Metamath Proof Explorer


Theorem sumeq2dv

Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis sumeq2dv.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 = 𝐶 )
Assertion sumeq2dv ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 sumeq2dv.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 = 𝐶 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵 = 𝐶 )
3 2 sumeq2d ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝐶 )