Step |
Hyp |
Ref |
Expression |
1 |
|
sumeven.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
sumeven.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
sumeven.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 2 ∥ 𝐵 ) |
4 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
5 |
4
|
breq2d |
⊢ ( 𝑥 = ∅ → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
6 |
|
sumeq1 |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
7 |
6
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
8 |
|
sumeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
9 |
8
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
10 |
|
sumeq1 |
⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
12 |
|
z0even |
⊢ 2 ∥ 0 |
13 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
14 |
12 13
|
breqtrri |
⊢ 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 |
15 |
14
|
a1i |
⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 ) |
16 |
|
2z |
⊢ 2 ∈ ℤ |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 2 ∈ ℤ ) |
18 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
19 |
18
|
expcom |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
21 |
1 20
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
22 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
23 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
27 |
22 26 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
28 |
21 27
|
fsumzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
29 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∈ 𝐴 ) |
30 |
29
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
32 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
34 |
|
rspcsbela |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
35 |
31 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
36 |
17 28 35
|
3jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
38 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 2 ∥ 𝐵 ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑘 2 |
40 |
|
nfcv |
⊢ Ⅎ 𝑘 ∥ |
41 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
42 |
39 40 41
|
nfbr |
⊢ Ⅎ 𝑘 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
43 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
44 |
43
|
breq2d |
⊢ ( 𝑘 = 𝑧 → ( 2 ∥ 𝐵 ↔ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
45 |
42 44
|
rspc |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 2 ∥ 𝐵 → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
46 |
29 38 45
|
syl2imc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
47 |
46
|
a1d |
⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
48 |
47
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
49 |
48
|
anim1ci |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ∧ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
50 |
|
dvds2add |
⊢ ( ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ∧ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
51 |
37 49 50
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
52 |
|
vex |
⊢ 𝑧 ∈ V |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ V ) |
54 |
|
eldif |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
55 |
|
df-nel |
⊢ ( 𝑧 ∉ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) |
56 |
55
|
biimpri |
⊢ ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∉ 𝑦 ) |
57 |
54 56
|
simplbiim |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∉ 𝑦 ) |
58 |
57
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∉ 𝑦 ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∉ 𝑦 ) |
60 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) |
61 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) ) |
62 |
24
|
com12 |
⊢ ( 𝑘 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
63 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑧 } → 𝑘 = 𝑧 ) |
64 |
|
eleq1w |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
65 |
30 64
|
syl5ibr |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
66 |
63 65
|
syl |
⊢ ( 𝑘 ∈ { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
67 |
62 66
|
jaoi |
⊢ ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
68 |
67
|
com12 |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
69 |
61 68
|
syl5bi |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
71 |
70
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
72 |
60 71 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℤ ) |
73 |
72
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) |
74 |
|
fsumsplitsnun |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑧 ∈ V ∧ 𝑧 ∉ 𝑦 ) ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
75 |
21 53 59 73 74
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
77 |
51 76
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
78 |
77
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
79 |
5 7 9 11 15 78 1
|
findcard2d |
⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |