| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumeven.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | sumeven.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | sumeven.e | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  2  ∥  𝐵 ) | 
						
							| 4 |  | sumeq1 | ⊢ ( 𝑥  =  ∅  →  Σ 𝑘  ∈  𝑥 𝐵  =  Σ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 5 | 4 | breq2d | ⊢ ( 𝑥  =  ∅  →  ( 2  ∥  Σ 𝑘  ∈  𝑥 𝐵  ↔  2  ∥  Σ 𝑘  ∈  ∅ 𝐵 ) ) | 
						
							| 6 |  | sumeq1 | ⊢ ( 𝑥  =  𝑦  →  Σ 𝑘  ∈  𝑥 𝐵  =  Σ 𝑘  ∈  𝑦 𝐵 ) | 
						
							| 7 | 6 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( 2  ∥  Σ 𝑘  ∈  𝑥 𝐵  ↔  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 ) ) | 
						
							| 8 |  | sumeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  Σ 𝑘  ∈  𝑥 𝐵  =  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 2  ∥  Σ 𝑘  ∈  𝑥 𝐵  ↔  2  ∥  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) ) | 
						
							| 10 |  | sumeq1 | ⊢ ( 𝑥  =  𝐴  →  Σ 𝑘  ∈  𝑥 𝐵  =  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑥  =  𝐴  →  ( 2  ∥  Σ 𝑘  ∈  𝑥 𝐵  ↔  2  ∥  Σ 𝑘  ∈  𝐴 𝐵 ) ) | 
						
							| 12 |  | z0even | ⊢ 2  ∥  0 | 
						
							| 13 |  | sum0 | ⊢ Σ 𝑘  ∈  ∅ 𝐵  =  0 | 
						
							| 14 | 12 13 | breqtrri | ⊢ 2  ∥  Σ 𝑘  ∈  ∅ 𝐵 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  2  ∥  Σ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 16 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  2  ∈  ℤ ) | 
						
							| 18 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 19 | 18 | expcom | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝐴  ∈  Fin  →  𝑦  ∈  Fin ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( 𝐴  ∈  Fin  →  𝑦  ∈  Fin ) ) | 
						
							| 21 | 1 20 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝜑 ) | 
						
							| 23 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 27 | 22 26 2 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℤ ) | 
						
							| 28 | 21 27 | fsumzcl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  Σ 𝑘  ∈  𝑦 𝐵  ∈  ℤ ) | 
						
							| 29 |  | eldifi | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  𝑦 )  →  𝑧  ∈  𝐴 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 32 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℤ ) | 
						
							| 34 |  | rspcsbela | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℤ )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℤ ) | 
						
							| 35 | 31 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℤ ) | 
						
							| 36 | 17 28 35 | 3jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 2  ∈  ℤ  ∧  Σ 𝑘  ∈  𝑦 𝐵  ∈  ℤ  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℤ ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 )  →  ( 2  ∈  ℤ  ∧  Σ 𝑘  ∈  𝑦 𝐵  ∈  ℤ  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℤ ) ) | 
						
							| 38 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 2  ∥  𝐵 ) | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑘 2 | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑘  ∥ | 
						
							| 41 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝐵 | 
						
							| 42 | 39 40 41 | nfbr | ⊢ Ⅎ 𝑘 2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 | 
						
							| 43 |  | csbeq1a | ⊢ ( 𝑘  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) | 
						
							| 44 | 43 | breq2d | ⊢ ( 𝑘  =  𝑧  →  ( 2  ∥  𝐵  ↔  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 45 | 42 44 | rspc | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑘  ∈  𝐴 2  ∥  𝐵  →  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 46 | 29 38 45 | syl2imc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝐴  ∖  𝑦 )  →  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 47 | 46 | a1d | ⊢ ( 𝜑  →  ( 𝑦  ⊆  𝐴  →  ( 𝑧  ∈  ( 𝐴  ∖  𝑦 )  →  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 48 | 47 | imp32 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) | 
						
							| 49 | 48 | anim1ci | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 )  →  ( 2  ∥  Σ 𝑘  ∈  𝑦 𝐵  ∧  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 50 |  | dvds2add | ⊢ ( ( 2  ∈  ℤ  ∧  Σ 𝑘  ∈  𝑦 𝐵  ∈  ℤ  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℤ )  →  ( ( 2  ∥  Σ 𝑘  ∈  𝑦 𝐵  ∧  2  ∥  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 )  →  2  ∥  ( Σ 𝑘  ∈  𝑦 𝐵  +  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 51 | 37 49 50 | sylc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 )  →  2  ∥  ( Σ 𝑘  ∈  𝑦 𝐵  +  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 52 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  V ) | 
						
							| 54 |  | eldif | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  𝑦 )  ↔  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 55 |  | df-nel | ⊢ ( 𝑧  ∉  𝑦  ↔  ¬  𝑧  ∈  𝑦 ) | 
						
							| 56 | 55 | biimpri | ⊢ ( ¬  𝑧  ∈  𝑦  →  𝑧  ∉  𝑦 ) | 
						
							| 57 | 54 56 | simplbiim | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  𝑦 )  →  𝑧  ∉  𝑦 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑧  ∉  𝑦 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∉  𝑦 ) | 
						
							| 60 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) )  →  𝜑 ) | 
						
							| 61 |  | elun | ⊢ ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  ↔  ( 𝑘  ∈  𝑦  ∨  𝑘  ∈  { 𝑧 } ) ) | 
						
							| 62 | 24 | com12 | ⊢ ( 𝑘  ∈  𝑦  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 63 |  | elsni | ⊢ ( 𝑘  ∈  { 𝑧 }  →  𝑘  =  𝑧 ) | 
						
							| 64 |  | eleq1w | ⊢ ( 𝑘  =  𝑧  →  ( 𝑘  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 65 | 30 64 | imbitrrid | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 66 | 63 65 | syl | ⊢ ( 𝑘  ∈  { 𝑧 }  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 67 | 62 66 | jaoi | ⊢ ( ( 𝑘  ∈  𝑦  ∨  𝑘  ∈  { 𝑧 } )  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 68 | 67 | com12 | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( ( 𝑘  ∈  𝑦  ∨  𝑘  ∈  { 𝑧 } )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 69 | 61 68 | biimtrid | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  →  𝑘  ∈  𝐴 ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 72 | 60 71 2 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) )  →  𝐵  ∈  ℤ ) | 
						
							| 73 | 72 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∀ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  ∈  ℤ ) | 
						
							| 74 |  | fsumsplitsnun | ⊢ ( ( 𝑦  ∈  Fin  ∧  ( 𝑧  ∈  V  ∧  𝑧  ∉  𝑦 )  ∧  ∀ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  ∈  ℤ )  →  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( Σ 𝑘  ∈  𝑦 𝐵  +  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 75 | 21 53 59 73 74 | syl121anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( Σ 𝑘  ∈  𝑦 𝐵  +  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 )  →  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( Σ 𝑘  ∈  𝑦 𝐵  +  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 77 | 51 76 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  2  ∥  Σ 𝑘  ∈  𝑦 𝐵 )  →  2  ∥  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) | 
						
							| 78 | 77 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 2  ∥  Σ 𝑘  ∈  𝑦 𝐵  →  2  ∥  Σ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) ) | 
						
							| 79 | 5 7 9 11 15 78 1 | findcard2d | ⊢ ( 𝜑  →  2  ∥  Σ 𝑘  ∈  𝐴 𝐵 ) |