Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
2 |
1
|
fvmpt2i |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
3 |
2
|
sumeq2i |
⊢ Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) |
4 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) |
7 |
4 5 6
|
cbvsumi |
⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
8 |
|
sum2id |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) |
9 |
3 7 8
|
3eqtr4i |
⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 𝐵 |