Metamath Proof Explorer


Theorem sumfc

Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Assertion sumfc Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 𝐵

Proof

Step Hyp Ref Expression
1 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
2 1 fvmpt2i ( 𝑘𝐴 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) )
3 2 sumeq2i Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = Σ 𝑘𝐴 ( I ‘ 𝐵 )
4 nffvmpt1 𝑘 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 )
5 nfcv 𝑗 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
6 fveq2 ( 𝑗 = 𝑘 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
7 4 5 6 cbvsumi Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
8 sum2id Σ 𝑘𝐴 𝐵 = Σ 𝑘𝐴 ( I ‘ 𝐵 )
9 3 7 8 3eqtr4i Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 𝐵