Step |
Hyp |
Ref |
Expression |
1 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Fin ) |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
fsumconst |
⊢ ( ( 𝐴 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ 𝐴 1 = ( ( ♯ ‘ 𝐴 ) · 1 ) ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → Σ 𝑘 ∈ 𝐴 1 = ( ( ♯ ‘ 𝐴 ) · 1 ) ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
6 |
2
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐴 1 ∈ ℂ |
7 |
6
|
a1i |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → ∀ 𝑘 ∈ 𝐴 1 ∈ ℂ ) |
8 |
|
animorlr |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ 𝐵 ∈ Fin ) ) |
9 |
|
sumss2 |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 1 ∈ ℂ ) ∧ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ 𝐵 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 1 = Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 1 , 0 ) ) |
10 |
5 7 8 9
|
syl21anc |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → Σ 𝑘 ∈ 𝐴 1 = Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 1 , 0 ) ) |
11 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
1 11
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
14 |
13
|
mulid1d |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) · 1 ) = ( ♯ ‘ 𝐴 ) ) |
15 |
4 10 14
|
3eqtr3d |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 1 , 0 ) = ( ♯ ‘ 𝐴 ) ) |