Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
2 |
|
summo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
summo.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑛 ) ) |
5 |
4
|
sseq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ) ) |
6 |
|
seqeq1 |
⊢ ( 𝑚 = 𝑛 → seq 𝑚 ( + , 𝐹 ) = seq 𝑛 ( + , 𝐹 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) |
10 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
11 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) |
12 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
13 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑚 ∈ ℤ ) |
14 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑛 ∈ ℤ ) |
15 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
16 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
17 |
1 12 13 14 15 16
|
sumrb |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
18 |
11 17
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ) |
19 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) |
20 |
|
climuni |
⊢ ( ( seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
22 |
21
|
exp31 |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
23 |
22
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
24 |
10 23
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
25 |
24
|
expdimp |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
26 |
9 25
|
syl5bi |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
27 |
1 2 3
|
summolem2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
28 |
26 27
|
jaod |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
29 |
1 2 3
|
summolem2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑦 = 𝑥 ) ) |
30 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
31 |
29 30
|
syl6ib |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
32 |
31
|
impancom |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
34 |
33
|
f1oeq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ↔ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
37 |
34 36
|
anbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
38 |
37
|
exbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
39 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ↔ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) |
40 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) |
41 |
40
|
csbeq1d |
⊢ ( 𝑓 = 𝑔 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
42 |
41
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
43 |
3 42
|
eqtrid |
⊢ ( 𝑓 = 𝑔 → 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
44 |
43
|
seqeq3d |
⊢ ( 𝑓 = 𝑔 → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ) |
45 |
44
|
fveq1d |
⊢ ( 𝑓 = 𝑔 → ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ↔ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
47 |
39 46
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ↔ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
48 |
47
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
49 |
38 48
|
bitrdi |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
50 |
49
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
51 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
52 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
53 |
|
an4 |
⊢ ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
54 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
55 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑗 ) ) |
56 |
55
|
csbeq1d |
⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
57 |
56
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
58 |
3 57
|
eqtri |
⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
59 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑗 ) ) |
60 |
59
|
csbeq1d |
⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
62 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) |
63 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) |
64 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) |
65 |
1 54 58 61 62 63 64
|
summolem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) |
66 |
|
eqeq12 |
⊢ ( ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → ( 𝑥 = 𝑦 ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
67 |
65 66
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑥 = 𝑦 ) ) |
68 |
67
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
69 |
53 68
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
70 |
69
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
71 |
52 70
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
72 |
71
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
73 |
51 72
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
74 |
73
|
expdimp |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑥 = 𝑦 ) ) |
75 |
50 74
|
syl5bi |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
76 |
32 75
|
jaod |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
77 |
28 76
|
jaodan |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
78 |
77
|
expimpd |
⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
79 |
78
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
80 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) |
81 |
80
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
82 |
81
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
83 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ↔ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
84 |
83
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
85 |
84
|
exbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
86 |
85
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
87 |
82 86
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) ) |
88 |
87
|
mo4 |
⊢ ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
89 |
79 88
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |