Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
2 |
|
summo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
summo.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑗 ) ) |
5 |
4
|
sseq2d |
⊢ ( 𝑚 = 𝑗 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) ) |
6 |
|
seqeq1 |
⊢ ( 𝑚 = 𝑗 → seq 𝑚 ( + , 𝐹 ) = seq 𝑗 ( + , 𝐹 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑚 = 𝑗 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
10 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) |
11 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
12 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑗 ) ⊆ ℤ |
13 |
|
zssre |
⊢ ℤ ⊆ ℝ |
14 |
12 13
|
sstri |
⊢ ( ℤ≥ ‘ 𝑗 ) ⊆ ℝ |
15 |
11 14
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
16 |
|
ltso |
⊢ < Or ℝ |
17 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
18 |
15 16 17
|
mpisyl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → < Or 𝐴 ) |
19 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
20 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
21 |
20
|
f1oen |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
22 |
21
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
23 |
22
|
ensymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
24 |
|
enfii |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) |
25 |
19 23 24
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
26 |
|
fz1iso |
⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
27 |
18 25 26
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
28 |
2
|
ad5ant15 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
29 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
30 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑗 ∈ ℤ ) |
32 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
33 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) |
34 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
35 |
1 28 3 29 30 31 32 33 34
|
summolem2a |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
36 |
35
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
37 |
36
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
38 |
27 37
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
39 |
|
climuni |
⊢ ( ( seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
40 |
10 38 39
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
41 |
40
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
42 |
|
eqeq2 |
⊢ ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) → ( 𝑥 = 𝑦 ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
43 |
41 42
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑦 ) ) |
44 |
43
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
45 |
44
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
46 |
45
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
47 |
46
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
48 |
9 47
|
sylan2b |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |