| Step |
Hyp |
Ref |
Expression |
| 1 |
|
summo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 2 |
|
summo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 3 |
|
summo.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 4 |
|
summolem2.4 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 5 |
|
summolem2.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
summolem2.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 |
|
summolem2.7 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 |
|
summolem2.8 |
⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
| 9 |
|
summolem2.9 |
⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 10 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 11 |
10 8
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 12 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 13 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 14 |
5 12 13
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 15 |
11 14
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 𝑁 ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) ) |
| 17 |
|
isoeq4 |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) |
| 19 |
9 18
|
mpbid |
⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
| 20 |
|
isof1o |
⊢ ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
| 22 |
|
f1of |
⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 25 |
5 24
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 28 |
23 27
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ 𝐴 ) |
| 29 |
7 28
|
sseldd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 |
|
f1ocnvfv2 |
⊢ ( ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑛 ) ) = 𝑛 ) |
| 32 |
21 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑛 ) ) = 𝑛 ) |
| 33 |
|
f1ocnv |
⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 34 |
|
f1of |
⊢ ( ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) |
| 35 |
21 33 34
|
3syl |
⊢ ( 𝜑 → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑛 ) ∈ ( 1 ... 𝑁 ) ) |
| 37 |
|
elfzle2 |
⊢ ( ( ◡ 𝐾 ‘ 𝑛 ) ∈ ( 1 ... 𝑁 ) → ( ◡ 𝐾 ‘ 𝑛 ) ≤ 𝑁 ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑛 ) ≤ 𝑁 ) |
| 39 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
| 40 |
|
fzssuz |
⊢ ( 1 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 41 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
| 42 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 43 |
41 42
|
sstri |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℝ |
| 44 |
40 43
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
| 45 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 46 |
44 45
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ* |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 1 ... 𝑁 ) ⊆ ℝ* ) |
| 48 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 50 |
49 42
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 51 |
48 50
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
| 52 |
51 45
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
| 53 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 54 |
|
leisorel |
⊢ ( ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ∧ ( ( 1 ... 𝑁 ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( ( ◡ 𝐾 ‘ 𝑛 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ◡ 𝐾 ‘ 𝑛 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑛 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 55 |
39 47 52 36 53 54
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ◡ 𝐾 ‘ 𝑛 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑛 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 56 |
38 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑛 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) |
| 57 |
32 56
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ≤ ( 𝐾 ‘ 𝑁 ) ) |
| 58 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
| 59 |
30 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
| 60 |
|
eluzelz |
⊢ ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
| 61 |
29 60
|
syl |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
| 63 |
|
eluz |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ 𝑛 ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 64 |
59 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ 𝑛 ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 65 |
57 64
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 66 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 67 |
30 65 66
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
| 68 |
67
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐴 → 𝑛 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) ) |
| 69 |
68
|
ssrdv |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
| 70 |
1 2 29 69
|
fsumcvg |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) ) |
| 71 |
|
addlid |
⊢ ( 𝑚 ∈ ℂ → ( 0 + 𝑚 ) = 𝑚 ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 0 + 𝑚 ) = 𝑚 ) |
| 73 |
|
addrid |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 + 0 ) = 𝑚 ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 𝑚 + 0 ) = 𝑚 ) |
| 75 |
|
addcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑚 + 𝑥 ) ∈ ℂ ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑚 + 𝑥 ) ∈ ℂ ) |
| 77 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 78 |
27 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 79 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 81 |
80 2
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 82 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
| 83 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 84 |
|
0cn |
⊢ 0 ∈ ℂ |
| 85 |
83 84
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 86 |
82 85
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 88 |
87 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
| 89 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ ) |
| 90 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℤ ⟶ ℂ ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 91 |
88 89 90
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 92 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑚 ) = 0 ) ) |
| 93 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 94 |
93
|
elfzelzd |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 95 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
| 96 |
95 83
|
syl |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 97 |
96 84
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 98 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 99 |
94 97 98
|
syl2anc |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 100 |
99 96
|
eqtrd |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 101 |
92 100
|
vtoclga |
⊢ ( 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 103 |
|
isof1o |
⊢ ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 104 |
|
f1of |
⊢ ( 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 105 |
9 103 104
|
3syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 106 |
105
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) |
| 107 |
106
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 108 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 109 |
108 106
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 110 |
|
eluzelz |
⊢ ( ( 𝐾 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ‘ 𝑥 ) ∈ ℤ ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ℤ ) |
| 112 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 113 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 |
| 114 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 |
| 115 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 116 |
113 114 115
|
nfif |
⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) |
| 117 |
116
|
nfel1 |
⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ |
| 118 |
112 117
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) |
| 119 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑥 ) ∈ V |
| 120 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( 𝑘 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 121 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 122 |
120 121
|
ifbieq1d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 123 |
122
|
eleq1d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ↔ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) ) |
| 124 |
123
|
imbi2d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ↔ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) ) ) |
| 125 |
118 119 124 86
|
vtoclf |
⊢ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) |
| 126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) |
| 127 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ( 𝑛 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 128 |
|
csbeq1 |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 129 |
127 128
|
ifbieq1d |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 130 |
|
nfcv |
⊢ Ⅎ 𝑛 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) |
| 131 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 |
| 132 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 |
| 133 |
131 132 115
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
| 134 |
|
eleq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴 ) ) |
| 135 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) |
| 136 |
134 135
|
ifbieq1d |
⊢ ( 𝑘 = 𝑛 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 137 |
130 133 136
|
cbvmpt |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 138 |
1 137
|
eqtri |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 139 |
129 138
|
fvmptg |
⊢ ( ( ( 𝐾 ‘ 𝑥 ) ∈ ℤ ∧ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ∈ ℂ ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 140 |
111 126 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 141 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑥 ∈ ℕ ) |
| 142 |
107 126
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 143 |
|
fveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑥 ) ) |
| 144 |
143
|
csbeq1d |
⊢ ( 𝑛 = 𝑥 → ⦋ ( 𝐾 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 145 |
144 4
|
fvmptg |
⊢ ( ( 𝑥 ∈ ℕ ∧ ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 146 |
141 142 145
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 147 |
107 140 146
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
| 148 |
72 74 76 77 9 78 7 91 102 147
|
seqcoll |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |
| 149 |
5 5
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) |
| 150 |
1 2 3 4 149 8 21
|
summolem3 |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |
| 151 |
148 150
|
eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 152 |
70 151
|
breqtrd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ) |