Step |
Hyp |
Ref |
Expression |
1 |
|
sumnnodd.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
2 |
|
sumnnodd.even0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
3 |
|
sumnnodd.sc |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
5 |
|
nfcv |
⊢ Ⅎ 𝑘 seq 1 ( + , 𝐹 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
7 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
8 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
9 |
6 7 8
|
nfseq |
⊢ Ⅎ 𝑘 seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) |
11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
13 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
15 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
16 |
11 12 15
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
21 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) |
22 |
|
ovex |
⊢ ( ( 2 · 1 ) − 1 ) ∈ V |
23 |
20 21 22
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) ) |
24 |
18 23
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) |
25 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
26 |
25
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
27 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
28 |
24 26 27
|
3eqtri |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = 1 |
29 |
28 18
|
eqeltri |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ ) |
31 |
|
2z |
⊢ 2 ∈ ℤ |
32 |
31
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℤ ) |
33 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
34 |
32 33
|
zmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℤ ) |
35 |
33
|
peano2zd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℤ ) |
36 |
32 35
|
zmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) ∈ ℤ ) |
37 |
|
1zzd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℤ ) |
38 |
36 37
|
zsubcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ) |
39 |
|
2re |
⊢ 2 ∈ ℝ |
40 |
39
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
41 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
42 |
40 41
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
43 |
42
|
lep1d |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
44 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
45 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
46 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) |
47 |
44 45 46
|
adddid |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
48 |
25
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) |
49 |
47 48
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) ) |
50 |
49
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) ) |
51 |
44 45
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
52 |
51 44 46
|
addsubassd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) = ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) ) |
53 |
27
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) |
54 |
53
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) ) |
55 |
50 52 54
|
3eqtrrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
56 |
43 55
|
breqtrd |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
57 |
|
eluz2 |
⊢ ( ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ↔ ( ( 2 · 𝑘 ) ∈ ℤ ∧ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) ) |
58 |
34 38 56 57
|
syl3anbrc |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 2 · 𝑗 ) − 1 ) ) |
62 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 2 · 𝑗 ) − 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
64 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
65 |
61 63 64 38
|
fvmptd3 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
66 |
34 37
|
zsubcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
67 |
21
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
68 |
66 67
|
mpdan |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
70 |
51 46
|
npcand |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
71 |
69 70
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( 2 · 𝑘 ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) = ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
73 |
58 65 72
|
3eltr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
75 |
|
seqex |
⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V |
76 |
75
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V ) |
77 |
|
incom |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
78 |
|
inss2 |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } |
79 |
|
ssrin |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
80 |
78 79
|
ax-mp |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
81 |
77 80
|
eqsstri |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
82 |
|
disjdif |
⊢ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ |
83 |
81 82
|
sseqtri |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ |
84 |
|
ss0 |
⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) |
85 |
83 84
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) |
86 |
|
uncom |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
87 |
|
inundif |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
88 |
86 87
|
eqtr2i |
⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
90 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) |
91 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝐹 : ℕ ⟶ ℂ ) |
92 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℕ ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝑗 ∈ ℕ ) |
94 |
91 93
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
95 |
94
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
96 |
85 89 90 95
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) ) |
97 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝜑 ) |
98 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ⊆ ℕ |
99 |
78
|
sseli |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
100 |
98 99
|
sselid |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 ∈ ℕ ) |
102 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 / 2 ) = ( 𝑗 / 2 ) ) |
103 |
102
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
104 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 / 2 ) = ( 𝑘 / 2 ) ) |
105 |
104
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑘 / 2 ) ∈ ℕ ) ) |
106 |
105
|
elrab |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ) |
107 |
106
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑘 / 2 ) ∈ ℕ ) |
108 |
103 107
|
vtoclga |
⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑗 / 2 ) ∈ ℕ ) |
109 |
99 108
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( 𝑗 / 2 ) ∈ ℕ ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝑗 / 2 ) ∈ ℕ ) |
111 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ℕ ↔ 𝑗 ∈ ℕ ) ) |
112 |
111 103
|
3anbi23d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) ) |
113 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑗 ) = 0 ) ) |
114 |
112 113
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) ) ) |
115 |
114 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
116 |
97 101 110 115
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
117 |
116
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 ) |
118 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) |
119 |
|
inss1 |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
120 |
119
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
121 |
|
ssfi |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
122 |
118 120 121
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
123 |
122
|
olcd |
⊢ ( 𝜑 → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) ) |
124 |
|
sumz |
⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) |
125 |
123 124
|
syl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) |
126 |
117 125
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
128 |
127
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) ) |
129 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin |
130 |
|
difss |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
131 |
|
ssfi |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
132 |
129 130 131
|
mp2an |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin |
133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
134 |
130
|
sseli |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
135 |
134 94
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
136 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
137 |
133 136
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
138 |
137
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) |
139 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) |
140 |
139
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) |
141 |
138 140
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
142 |
128 141
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
143 |
|
fveq2 |
⊢ ( 𝑖 = ( ( 2 · 𝑗 ) − 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
144 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... 𝑘 ) ∈ Fin ) |
145 |
|
1zzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℤ ) |
146 |
66
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
147 |
31
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
148 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℤ ) |
149 |
147 148
|
zmulcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℤ ) |
150 |
|
1zzd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) |
151 |
149 150
|
zsubcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
152 |
151
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
153 |
26 27
|
eqtr2i |
⊢ 1 = ( ( 2 · 1 ) − 1 ) |
154 |
|
1re |
⊢ 1 ∈ ℝ |
155 |
39 154
|
remulcli |
⊢ ( 2 · 1 ) ∈ ℝ |
156 |
155
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
157 |
149
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℝ ) |
158 |
|
1red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) |
159 |
148
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℝ ) |
160 |
39
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
161 |
|
0le2 |
⊢ 0 ≤ 2 |
162 |
161
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
163 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑖 ) |
164 |
158 159 160 162 163
|
lemul2ad |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑖 ) ) |
165 |
156 157 158 164
|
lesub1dd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
166 |
153 165
|
eqbrtrid |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
167 |
166
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
168 |
157
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ∈ ℝ ) |
169 |
42
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑘 ) ∈ ℝ ) |
170 |
|
1red |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℝ ) |
171 |
159
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ∈ ℝ ) |
172 |
41
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℝ ) |
173 |
39
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 2 ∈ ℝ ) |
174 |
161
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 0 ≤ 2 ) |
175 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ≤ 𝑘 ) |
176 |
175
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ≤ 𝑘 ) |
177 |
171 172 173 174 176
|
lemul2ad |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ≤ ( 2 · 𝑘 ) ) |
178 |
168 169 170 177
|
lesub1dd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
179 |
145 146 152 167 178
|
elfzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
180 |
149
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℂ ) |
181 |
|
1cnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℂ ) |
182 |
|
2cnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
183 |
|
2ne0 |
⊢ 2 ≠ 0 |
184 |
183
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ≠ 0 ) |
185 |
180 181 182 184
|
divsubdird |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) ) |
186 |
148
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℂ ) |
187 |
186 182 184
|
divcan3d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) / 2 ) = 𝑖 ) |
188 |
187
|
oveq1d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) = ( 𝑖 − ( 1 / 2 ) ) ) |
189 |
185 188
|
eqtrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( 𝑖 − ( 1 / 2 ) ) ) |
190 |
148 150
|
zsubcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) ∈ ℤ ) |
191 |
160 184
|
rereccld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ ) |
192 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
193 |
192
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) < 1 ) |
194 |
191 158 159 193
|
ltsub2dd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ) |
195 |
|
2rp |
⊢ 2 ∈ ℝ+ |
196 |
|
rpreccl |
⊢ ( 2 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
197 |
195 196
|
mp1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ+ ) |
198 |
159 197
|
ltsubrpd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < 𝑖 ) |
199 |
186 181
|
npcand |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 − 1 ) + 1 ) = 𝑖 ) |
200 |
198 199
|
breqtrrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) |
201 |
|
btwnnz |
⊢ ( ( ( 𝑖 − 1 ) ∈ ℤ ∧ ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ∧ ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
202 |
190 194 200 201
|
syl3anc |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
203 |
|
nnz |
⊢ ( ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ → ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
204 |
202 203
|
nsyl |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ ) |
205 |
189 204
|
eqneltrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) |
206 |
205
|
intnand |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
207 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ) |
208 |
207
|
eleq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
209 |
208
|
elrab |
⊢ ( ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
210 |
206 209
|
sylnibr |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
211 |
210
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
212 |
179 211
|
eldifd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
213 |
212
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
214 |
|
eqidd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
215 |
|
oveq2 |
⊢ ( 𝑖 = 𝑥 → ( 2 · 𝑖 ) = ( 2 · 𝑥 ) ) |
216 |
215
|
oveq1d |
⊢ ( 𝑖 = 𝑥 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
217 |
216
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑥 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
218 |
|
id |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ( 1 ... 𝑘 ) ) |
219 |
|
ovexd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ V ) |
220 |
214 217 218 219
|
fvmptd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
221 |
220
|
eqcomd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
222 |
221
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
223 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) |
224 |
|
eqidd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
225 |
|
oveq2 |
⊢ ( 𝑖 = 𝑦 → ( 2 · 𝑖 ) = ( 2 · 𝑦 ) ) |
226 |
225
|
oveq1d |
⊢ ( 𝑖 = 𝑦 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
227 |
226
|
adantl |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑦 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
228 |
|
id |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ( 1 ... 𝑘 ) ) |
229 |
|
ovexd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ V ) |
230 |
224 227 228 229
|
fvmptd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
231 |
230
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
232 |
222 223 231
|
3eqtrd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
233 |
|
2cnd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
234 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℤ ) |
235 |
234
|
zcnd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℂ ) |
236 |
233 235
|
mulcld |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑥 ) ∈ ℂ ) |
237 |
236
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) ∈ ℂ ) |
238 |
|
2cnd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
239 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℤ ) |
240 |
239
|
zcnd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℂ ) |
241 |
238 240
|
mulcld |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑦 ) ∈ ℂ ) |
242 |
241
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑦 ) ∈ ℂ ) |
243 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 1 ∈ ℂ ) |
244 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
245 |
237 242 243 244
|
subcan2d |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
246 |
235
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 ∈ ℂ ) |
247 |
240
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑦 ∈ ℂ ) |
248 |
|
2cnd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ∈ ℂ ) |
249 |
183
|
a1i |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ≠ 0 ) |
250 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
251 |
246 247 248 249 250
|
mulcanad |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 = 𝑦 ) |
252 |
245 251
|
syldan |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 𝑥 = 𝑦 ) |
253 |
232 252
|
syldan |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
254 |
253
|
adantll |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
255 |
254
|
ex |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) → ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
256 |
255
|
ralrimivva |
⊢ ( 𝑘 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
257 |
|
dff13 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
258 |
213 256 257
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
259 |
|
1zzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ∈ ℤ ) |
260 |
33
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑘 ∈ ℤ ) |
261 |
134
|
elfzelzd |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℤ ) |
262 |
|
zeo |
⊢ ( 𝑗 ∈ ℤ → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
263 |
261 262
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
264 |
263
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
265 |
|
eldifn |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
266 |
134 92
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
267 |
266
|
adantr |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℕ ) |
268 |
|
simpr |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℤ ) |
269 |
267
|
nnred |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℝ ) |
270 |
39
|
a1i |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 2 ∈ ℝ ) |
271 |
267
|
nngt0d |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 𝑗 ) |
272 |
|
2pos |
⊢ 0 < 2 |
273 |
272
|
a1i |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 2 ) |
274 |
269 270 271 273
|
divgt0d |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < ( 𝑗 / 2 ) ) |
275 |
|
elnnz |
⊢ ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( ( 𝑗 / 2 ) ∈ ℤ ∧ 0 < ( 𝑗 / 2 ) ) ) |
276 |
268 274 275
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℕ ) |
277 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 / 2 ) = ( 𝑗 / 2 ) ) |
278 |
277
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
279 |
278
|
elrab |
⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) |
280 |
267 276 279
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
281 |
265 280
|
mtand |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
282 |
281
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
283 |
|
pm2.53 |
⊢ ( ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) → ( ¬ ( 𝑗 / 2 ) ∈ ℤ → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
284 |
264 282 283
|
sylc |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) |
285 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
286 |
285
|
oveq1i |
⊢ ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
287 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
288 |
286 287
|
eqtr2i |
⊢ 1 = ( ( 1 + 1 ) / 2 ) |
289 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ∈ ℝ ) |
290 |
289 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ∈ ℝ ) |
291 |
92
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℝ ) |
292 |
291 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
293 |
195
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 2 ∈ ℝ+ ) |
294 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ 𝑗 ) |
295 |
289 291 289 294
|
leadd1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ≤ ( 𝑗 + 1 ) ) |
296 |
290 292 293 295
|
lediv1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 1 + 1 ) / 2 ) ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
297 |
288 296
|
eqbrtrid |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
298 |
134 297
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
299 |
298
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
300 |
|
elfzel2 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
301 |
300
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℝ ) |
302 |
301 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ∈ ℝ ) |
303 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
304 |
291 301 289 303
|
leadd1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ≤ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
305 |
292 302 293 304
|
lediv1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
306 |
305
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
307 |
51
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
308 |
|
1cnd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 1 ∈ ℂ ) |
309 |
307 308
|
npcand |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
310 |
309
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = ( ( 2 · 𝑘 ) / 2 ) ) |
311 |
183
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
312 |
45 44 311
|
divcan3d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
313 |
312
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
314 |
310 313
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = 𝑘 ) |
315 |
306 314
|
breqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
316 |
134 315
|
sylan2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
317 |
259 260 284 299 316
|
elfzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ) |
318 |
266
|
nncnd |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℂ ) |
319 |
|
peano2cn |
⊢ ( 𝑗 ∈ ℂ → ( 𝑗 + 1 ) ∈ ℂ ) |
320 |
|
2cnd |
⊢ ( 𝑗 ∈ ℂ → 2 ∈ ℂ ) |
321 |
183
|
a1i |
⊢ ( 𝑗 ∈ ℂ → 2 ≠ 0 ) |
322 |
319 320 321
|
divcan2d |
⊢ ( 𝑗 ∈ ℂ → ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) = ( 𝑗 + 1 ) ) |
323 |
322
|
oveq1d |
⊢ ( 𝑗 ∈ ℂ → ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
324 |
|
pncan1 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
325 |
323 324
|
eqtr2d |
⊢ ( 𝑗 ∈ ℂ → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
326 |
318 325
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
327 |
326
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
328 |
|
oveq2 |
⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( 2 · 𝑚 ) = ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) ) |
329 |
328
|
oveq1d |
⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
330 |
329
|
rspceeqv |
⊢ ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
331 |
317 327 330
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
332 |
|
eqidd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
333 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( 2 · 𝑖 ) = ( 2 · 𝑚 ) ) |
334 |
333
|
oveq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
335 |
334
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) ∧ 𝑖 = 𝑚 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
336 |
|
simpl |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑚 ∈ ( 1 ... 𝑘 ) ) |
337 |
|
ovexd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) ∈ V ) |
338 |
332 335 336 337
|
fvmptd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
339 |
|
id |
⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
340 |
339
|
eqcomd |
⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
341 |
340
|
adantl |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
342 |
338 341
|
eqtr2d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
343 |
342
|
ex |
⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
344 |
343
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
345 |
344
|
reximdva |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
346 |
331 345
|
mpd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
347 |
346
|
ralrimiva |
⊢ ( 𝑘 ∈ ℕ → ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
348 |
|
dffo3 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
349 |
213 347 348
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
350 |
|
df-f1o |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
351 |
258 349 350
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
352 |
351
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
353 |
|
eqidd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
354 |
|
oveq2 |
⊢ ( 𝑖 = 𝑗 → ( 2 · 𝑖 ) = ( 2 · 𝑗 ) ) |
355 |
354
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
356 |
355
|
adantl |
⊢ ( ( 𝑗 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑗 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
357 |
|
id |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ( 1 ... 𝑘 ) ) |
358 |
|
ovexd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ V ) |
359 |
353 356 357 358
|
fvmptd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
360 |
359
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
361 |
|
eleq1w |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
362 |
361
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) ) |
363 |
139
|
eleq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) |
364 |
362 363
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) ) |
365 |
364 136
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
366 |
143 144 352 360 365
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
367 |
96 142 366
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ) |
368 |
|
ovex |
⊢ ( ( 2 · 𝑘 ) − 1 ) ∈ V |
369 |
21
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
370 |
368 369
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
371 |
370
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
372 |
371
|
eqcomd |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
373 |
372
|
sumeq1d |
⊢ ( 𝑘 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
374 |
373
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
375 |
367 374
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
376 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) |
377 |
376
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
378 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝐹 : ℕ ⟶ ℂ ) |
379 |
31
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
380 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℤ ) |
381 |
379 380
|
zmulcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℤ ) |
382 |
|
1zzd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) |
383 |
381 382
|
zsubcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ) |
384 |
|
0red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ∈ ℝ ) |
385 |
39
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
386 |
25 385
|
eqeltrid |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
387 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) |
388 |
386 387
|
resubcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ∈ ℝ ) |
389 |
383
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ ) |
390 |
|
0lt1 |
⊢ 0 < 1 |
391 |
153
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 = ( ( 2 · 1 ) − 1 ) ) |
392 |
390 391
|
breqtrid |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 1 ) − 1 ) ) |
393 |
381
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
394 |
376
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℝ ) |
395 |
161
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
396 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑗 ) |
397 |
387 394 385 395 396
|
lemul2ad |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑗 ) ) |
398 |
386 393 387 397
|
lesub1dd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑗 ) − 1 ) ) |
399 |
384 388 389 392 398
|
ltletrd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 𝑗 ) − 1 ) ) |
400 |
|
elnnz |
⊢ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ↔ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 2 · 𝑗 ) − 1 ) ) ) |
401 |
383 399 400
|
sylanbrc |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
402 |
401
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
403 |
378 402
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
404 |
403
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
405 |
60
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
406 |
405
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
407 |
406
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
408 |
377 404 407
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
409 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
410 |
409 11
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
411 |
408 410 404
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) ) |
412 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
413 |
155
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ∈ ℝ ) |
414 |
|
1red |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) |
415 |
161
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
416 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
417 |
414 41 40 415 416
|
lemul2ad |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ≤ ( 2 · 𝑘 ) ) |
418 |
413 42 414 417
|
lesub1dd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
419 |
153 418
|
eqbrtrid |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
420 |
|
eluz2 |
⊢ ( ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ∧ 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) ) |
421 |
37 66 419 420
|
syl3anbrc |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
422 |
68 421
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
423 |
422
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
424 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝜑 ) |
425 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
426 |
371
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
427 |
425 426
|
eleqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
428 |
427
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
429 |
424 428 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
430 |
412 423 429
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
431 |
375 411 430
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
432 |
4 5 9 10 11 12 14 17 3 30 74 76 431
|
climsuse |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) |
433 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
434 |
11 12 433 15
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
435 |
|
climrel |
⊢ Rel ⇝ |
436 |
435
|
releldmi |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ 𝐵 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
437 |
3 436
|
syl |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
438 |
|
climdm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
439 |
437 438
|
sylib |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
440 |
|
climuni |
⊢ ( ( seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∧ seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) |
441 |
439 3 440
|
syl2anc |
⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) |
442 |
435
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
443 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) |
444 |
442 432 443
|
syl2anc |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) |
445 |
|
climdm |
⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) |
446 |
444 445
|
sylib |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) |
447 |
406
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) |
448 |
447
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) |
449 |
448
|
fveq2d |
⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
450 |
446 449
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
451 |
|
climuni |
⊢ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
452 |
432 450 451
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
453 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) |
454 |
|
eqcom |
⊢ ( 𝑘 = 𝑗 ↔ 𝑗 = 𝑘 ) |
455 |
|
eqcom |
⊢ ( ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ↔ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
456 |
405 454 455
|
3imtr3i |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
457 |
456
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 = 𝑘 ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
458 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℂ ) |
459 |
421 11
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
460 |
459
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
461 |
458 460
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℂ ) |
462 |
453 457 409 461
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
463 |
11 12 462 461
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
464 |
452 463
|
eqtr4d |
⊢ ( 𝜑 → 𝐵 = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
465 |
434 441 464
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
466 |
432 465
|
jca |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |