Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
sumnul.5 | ⊢ ( 𝜑 → ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
Assertion | sumnul | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
4 | isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
5 | sumnul.5 | ⊢ ( 𝜑 → ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
6 | 1 2 3 4 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
7 | ndmfv | ⊢ ( ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ∅ ) | |
8 | 5 7 | syl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ∅ ) |
9 | 6 8 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ∅ ) |