Metamath Proof Explorer


Theorem sumnul

Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 𝑍 = ( ℤ𝑀 )
isumcl.2 ( 𝜑𝑀 ∈ ℤ )
isumcl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumcl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
sumnul.5 ( 𝜑 → ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
Assertion sumnul ( 𝜑 → Σ 𝑘𝑍 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 isumcl.1 𝑍 = ( ℤ𝑀 )
2 isumcl.2 ( 𝜑𝑀 ∈ ℤ )
3 isumcl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumcl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
5 sumnul.5 ( 𝜑 → ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 1 2 3 4 isum ( 𝜑 → Σ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
7 ndmfv ( ¬ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ∅ )
8 5 7 syl ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ∅ )
9 6 8 eqtrd ( 𝜑 → Σ 𝑘𝑍 𝐴 = ∅ )