Metamath Proof Explorer


Theorem sumpair

Description: Sum of two distinct complex values. The class expression for A and B normally contain free variable k to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses sumpair.1 ( 𝜑 𝑘 𝐷 )
sumpair.3 ( 𝜑 𝑘 𝐸 )
sumupair.1 ( 𝜑𝐴𝑉 )
sumupair.2 ( 𝜑𝐵𝑊 )
sumupair.3 ( 𝜑𝐷 ∈ ℂ )
sumupair.4 ( 𝜑𝐸 ∈ ℂ )
sumupair.5 ( 𝜑𝐴𝐵 )
sumupair.8 ( ( 𝜑𝑘 = 𝐴 ) → 𝐶 = 𝐷 )
sumupair.9 ( ( 𝜑𝑘 = 𝐵 ) → 𝐶 = 𝐸 )
Assertion sumpair ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) )

Proof

Step Hyp Ref Expression
1 sumpair.1 ( 𝜑 𝑘 𝐷 )
2 sumpair.3 ( 𝜑 𝑘 𝐸 )
3 sumupair.1 ( 𝜑𝐴𝑉 )
4 sumupair.2 ( 𝜑𝐵𝑊 )
5 sumupair.3 ( 𝜑𝐷 ∈ ℂ )
6 sumupair.4 ( 𝜑𝐸 ∈ ℂ )
7 sumupair.5 ( 𝜑𝐴𝐵 )
8 sumupair.8 ( ( 𝜑𝑘 = 𝐴 ) → 𝐶 = 𝐷 )
9 sumupair.9 ( ( 𝜑𝑘 = 𝐵 ) → 𝐶 = 𝐸 )
10 disjsn2 ( 𝐴𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
11 7 10 syl ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
12 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
13 12 a1i ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) )
14 prfi { 𝐴 , 𝐵 } ∈ Fin
15 14 a1i ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin )
16 elpri ( 𝑘 ∈ { 𝐴 , 𝐵 } → ( 𝑘 = 𝐴𝑘 = 𝐵 ) )
17 5 adantr ( ( 𝜑𝑘 = 𝐴 ) → 𝐷 ∈ ℂ )
18 8 17 eqeltrd ( ( 𝜑𝑘 = 𝐴 ) → 𝐶 ∈ ℂ )
19 6 adantr ( ( 𝜑𝑘 = 𝐵 ) → 𝐸 ∈ ℂ )
20 9 19 eqeltrd ( ( 𝜑𝑘 = 𝐵 ) → 𝐶 ∈ ℂ )
21 18 20 jaodan ( ( 𝜑 ∧ ( 𝑘 = 𝐴𝑘 = 𝐵 ) ) → 𝐶 ∈ ℂ )
22 16 21 sylan2 ( ( 𝜑𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ )
23 11 13 15 22 fsumsplit ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) )
24 nfv 𝑘 𝜑
25 1 24 8 3 5 sumsnd ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 )
26 2 24 9 4 6 sumsnd ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 )
27 25 26 oveq12d ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) )
28 23 27 eqtrd ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) )