Step |
Hyp |
Ref |
Expression |
1 |
|
sumpr.1 |
⊢ ( 𝑘 = 𝐴 → 𝐶 = 𝐷 ) |
2 |
|
sumpr.2 |
⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐸 ) |
3 |
|
sumpr.3 |
⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) |
4 |
|
sumpr.4 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
5 |
|
sumpr.5 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
6 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
8 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
10 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
11 |
10
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
12 |
1
|
eleq1d |
⊢ ( 𝑘 = 𝐴 → ( 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
13 |
2
|
eleq1d |
⊢ ( 𝑘 = 𝐵 → ( 𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
14 |
12 13
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
16 |
3 15
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ) |
17 |
16
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ ) |
18 |
7 9 11 17
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
19 |
4
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
20 |
3
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
21 |
1
|
sumsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
23 |
4
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
24 |
3
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
25 |
2
|
sumsn |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
26 |
23 24 25
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
27 |
22 26
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) ) |
28 |
18 27
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |