| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumpr.1 | ⊢ ( 𝑘  =  𝐴  →  𝐶  =  𝐷 ) | 
						
							| 2 |  | sumpr.2 | ⊢ ( 𝑘  =  𝐵  →  𝐶  =  𝐸 ) | 
						
							| 3 |  | sumpr.3 | ⊢ ( 𝜑  →  ( 𝐷  ∈  ℂ  ∧  𝐸  ∈  ℂ ) ) | 
						
							| 4 |  | sumpr.4 | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) ) | 
						
							| 5 |  | sumpr.5 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 6 |  | disjsn2 | ⊢ ( 𝐴  ≠  𝐵  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 8 |  | df-pr | ⊢ { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) ) | 
						
							| 10 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ∈  Fin ) | 
						
							| 12 | 1 | eleq1d | ⊢ ( 𝑘  =  𝐴  →  ( 𝐶  ∈  ℂ  ↔  𝐷  ∈  ℂ ) ) | 
						
							| 13 | 2 | eleq1d | ⊢ ( 𝑘  =  𝐵  →  ( 𝐶  ∈  ℂ  ↔  𝐸  ∈  ℂ ) ) | 
						
							| 14 | 12 13 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐶  ∈  ℂ  ↔  ( 𝐷  ∈  ℂ  ∧  𝐸  ∈  ℂ ) ) ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐶  ∈  ℂ  ↔  ( 𝐷  ∈  ℂ  ∧  𝐸  ∈  ℂ ) ) ) | 
						
							| 16 | 3 15 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐶  ∈  ℂ ) | 
						
							| 17 | 16 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 ,  𝐵 } )  →  𝐶  ∈  ℂ ) | 
						
							| 18 | 7 9 11 17 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐶  =  ( Σ 𝑘  ∈  { 𝐴 } 𝐶  +  Σ 𝑘  ∈  { 𝐵 } 𝐶 ) ) | 
						
							| 19 | 4 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 20 | 3 | simpld | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 21 | 1 | sumsn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐷  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝐴 } 𝐶  =  𝐷 ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝐴 } 𝐶  =  𝐷 ) | 
						
							| 23 | 4 | simprd | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 24 | 3 | simprd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 25 | 2 | sumsn | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐸  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝐵 } 𝐶  =  𝐸 ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝐵 } 𝐶  =  𝐸 ) | 
						
							| 27 | 22 26 | oveq12d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  { 𝐴 } 𝐶  +  Σ 𝑘  ∈  { 𝐵 } 𝐶 )  =  ( 𝐷  +  𝐸 ) ) | 
						
							| 28 | 18 27 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐶  =  ( 𝐷  +  𝐸 ) ) |