Metamath Proof Explorer


Theorem sumpr

Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Hypotheses sumpr.1 ( 𝑘 = 𝐴𝐶 = 𝐷 )
sumpr.2 ( 𝑘 = 𝐵𝐶 = 𝐸 )
sumpr.3 ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) )
sumpr.4 ( 𝜑 → ( 𝐴𝑉𝐵𝑊 ) )
sumpr.5 ( 𝜑𝐴𝐵 )
Assertion sumpr ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) )

Proof

Step Hyp Ref Expression
1 sumpr.1 ( 𝑘 = 𝐴𝐶 = 𝐷 )
2 sumpr.2 ( 𝑘 = 𝐵𝐶 = 𝐸 )
3 sumpr.3 ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) )
4 sumpr.4 ( 𝜑 → ( 𝐴𝑉𝐵𝑊 ) )
5 sumpr.5 ( 𝜑𝐴𝐵 )
6 disjsn2 ( 𝐴𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
7 5 6 syl ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
8 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
9 8 a1i ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) )
10 prfi { 𝐴 , 𝐵 } ∈ Fin
11 10 a1i ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin )
12 1 eleq1d ( 𝑘 = 𝐴 → ( 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) )
13 2 eleq1d ( 𝑘 = 𝐵 → ( 𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ ) )
14 12 13 ralprg ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) )
15 4 14 syl ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) )
16 3 15 mpbird ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ )
17 16 r19.21bi ( ( 𝜑𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ )
18 7 9 11 17 fsumsplit ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) )
19 4 simpld ( 𝜑𝐴𝑉 )
20 3 simpld ( 𝜑𝐷 ∈ ℂ )
21 1 sumsn ( ( 𝐴𝑉𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 )
22 19 20 21 syl2anc ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 )
23 4 simprd ( 𝜑𝐵𝑊 )
24 3 simprd ( 𝜑𝐸 ∈ ℂ )
25 2 sumsn ( ( 𝐵𝑊𝐸 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 )
26 23 24 25 syl2anc ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 )
27 22 26 oveq12d ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) )
28 18 27 eqtrd ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) )