| Step | Hyp | Ref | Expression | 
						
							| 1 |  | summo.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 2 |  | summo.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | sumrb.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 4 |  | addlid | ⊢ ( 𝑛  ∈  ℂ  →  ( 0  +  𝑛 )  =  𝑛 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ℂ )  →  ( 0  +  𝑛 )  =  𝑛 ) | 
						
							| 6 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  0  ∈  ℂ ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 |  | iftrue | ⊢ ( 𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  =  𝐵 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  =  𝐵 ) | 
						
							| 10 | 9 2 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) ) | 
						
							| 12 |  | iffalse | ⊢ ( ¬  𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  =  0 ) | 
						
							| 13 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 14 | 12 13 | eqeltrdi | ⊢ ( ¬  𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 15 | 11 14 | pm2.61d1 | ⊢ ( 𝜑  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 17 | 16 1 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℤ ⟶ ℂ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  𝐹 : ℤ ⟶ ℂ ) | 
						
							| 19 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 22 | 18 21 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 23 |  | elfzelz | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 26 | 20 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℂ ) | 
						
							| 28 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 29 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 30 | 27 28 29 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 32 | 25 31 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝐴  ⊆  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 33 |  | fznuz | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  ¬  𝑛  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ¬  𝑛  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 35 | 32 34 | ssneldd | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ¬  𝑛  ∈  𝐴 ) | 
						
							| 36 | 24 35 | eldifd | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝑛  ∈  ( ℤ  ∖  𝐴 ) ) | 
						
							| 37 |  | fveqeq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  =  0  ↔  ( 𝐹 ‘ 𝑛 )  =  0 ) ) | 
						
							| 38 |  | eldifi | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  𝑘  ∈  ℤ ) | 
						
							| 39 |  | eldifn | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ¬  𝑘  ∈  𝐴 ) | 
						
							| 40 | 39 12 | syl | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  =  0 ) | 
						
							| 41 | 40 13 | eqeltrdi | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 42 | 1 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℤ  ∧  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ℂ )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 43 | 38 41 42 | syl2anc | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 44 | 43 40 | eqtrd | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  =  0 ) | 
						
							| 45 | 37 44 | vtoclga | ⊢ ( 𝑛  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑛 )  =  0 ) | 
						
							| 46 | 36 45 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  =  0 ) | 
						
							| 47 | 5 6 7 22 46 | seqid | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  =  seq 𝑁 (  +  ,  𝐹 ) ) |