Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
2 |
|
summo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
sumrb.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
addid2 |
⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
6 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 0 ∈ ℂ ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
10 |
9 2
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
12 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
13 |
|
0cn |
⊢ 0 ∈ ℂ |
14 |
12 13
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
15 |
11 14
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
17 |
16 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝐹 : ℤ ⟶ ℂ ) |
19 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
22 |
18 21
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
23 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ℤ ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
26 |
20
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℂ ) |
28 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
29 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
30 |
27 28 29
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
31 |
30
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
32 |
25 31
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
33 |
|
fznuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
35 |
32 34
|
ssneldd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ 𝐴 ) |
36 |
24 35
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( ℤ ∖ 𝐴 ) ) |
37 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑛 ) = 0 ) ) |
38 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
39 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
40 |
39 12
|
syl |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
41 |
40 13
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
42 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
43 |
38 41 42
|
syl2anc |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
44 |
43 40
|
eqtrd |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
45 |
37 44
|
vtoclga |
⊢ ( 𝑛 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
46 |
36 45
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
47 |
5 6 7 22 46
|
seqid |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |