Metamath Proof Explorer


Theorem sumsnd

Description: A sum of a singleton is the term. The deduction version of sumsn . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses sumsnd.1 ( 𝜑 𝑘 𝐵 )
sumsnd.2 𝑘 𝜑
sumsnd.3 ( ( 𝜑𝑘 = 𝑀 ) → 𝐴 = 𝐵 )
sumsnd.4 ( 𝜑𝑀𝑉 )
sumsnd.5 ( 𝜑𝐵 ∈ ℂ )
Assertion sumsnd ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 sumsnd.1 ( 𝜑 𝑘 𝐵 )
2 sumsnd.2 𝑘 𝜑
3 sumsnd.3 ( ( 𝜑𝑘 = 𝑀 ) → 𝐴 = 𝐵 )
4 sumsnd.4 ( 𝜑𝑀𝑉 )
5 sumsnd.5 ( 𝜑𝐵 ∈ ℂ )
6 nfcv 𝑚 𝐴
7 nfcsb1v 𝑘 𝑚 / 𝑘 𝐴
8 csbeq1a ( 𝑘 = 𝑚𝐴 = 𝑚 / 𝑘 𝐴 )
9 6 7 8 cbvsumi Σ 𝑘 ∈ { 𝑀 } 𝐴 = Σ 𝑚 ∈ { 𝑀 } 𝑚 / 𝑘 𝐴
10 csbeq1 ( 𝑚 = ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) → 𝑚 / 𝑘 𝐴 = ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) / 𝑘 𝐴 )
11 1nn 1 ∈ ℕ
12 11 a1i ( 𝜑 → 1 ∈ ℕ )
13 f1osng ( ( 1 ∈ ℕ ∧ 𝑀𝑉 ) → { ⟨ 1 , 𝑀 ⟩ } : { 1 } –1-1-onto→ { 𝑀 } )
14 11 4 13 sylancr ( 𝜑 → { ⟨ 1 , 𝑀 ⟩ } : { 1 } –1-1-onto→ { 𝑀 } )
15 1z 1 ∈ ℤ
16 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
17 f1oeq2 ( ( 1 ... 1 ) = { 1 } → ( { ⟨ 1 , 𝑀 ⟩ } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } ↔ { ⟨ 1 , 𝑀 ⟩ } : { 1 } –1-1-onto→ { 𝑀 } ) )
18 15 16 17 mp2b ( { ⟨ 1 , 𝑀 ⟩ } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } ↔ { ⟨ 1 , 𝑀 ⟩ } : { 1 } –1-1-onto→ { 𝑀 } )
19 14 18 sylibr ( 𝜑 → { ⟨ 1 , 𝑀 ⟩ } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } )
20 elsni ( 𝑚 ∈ { 𝑀 } → 𝑚 = 𝑀 )
21 20 adantl ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝑚 = 𝑀 )
22 21 csbeq1d ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝑚 / 𝑘 𝐴 = 𝑀 / 𝑘 𝐴 )
23 2 1 4 3 csbiedf ( 𝜑 𝑀 / 𝑘 𝐴 = 𝐵 )
24 23 adantr ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝑀 / 𝑘 𝐴 = 𝐵 )
25 5 adantr ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝐵 ∈ ℂ )
26 24 25 eqeltrd ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝑀 / 𝑘 𝐴 ∈ ℂ )
27 22 26 eqeltrd ( ( 𝜑𝑚 ∈ { 𝑀 } ) → 𝑚 / 𝑘 𝐴 ∈ ℂ )
28 23 adantr ( ( 𝜑𝑛 ∈ ( 1 ... 1 ) ) → 𝑀 / 𝑘 𝐴 = 𝐵 )
29 elfz1eq ( 𝑛 ∈ ( 1 ... 1 ) → 𝑛 = 1 )
30 29 fveq2d ( 𝑛 ∈ ( 1 ... 1 ) → ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) = ( { ⟨ 1 , 𝑀 ⟩ } ‘ 1 ) )
31 fvsng ( ( 1 ∈ ℕ ∧ 𝑀𝑉 ) → ( { ⟨ 1 , 𝑀 ⟩ } ‘ 1 ) = 𝑀 )
32 11 4 31 sylancr ( 𝜑 → ( { ⟨ 1 , 𝑀 ⟩ } ‘ 1 ) = 𝑀 )
33 30 32 sylan9eqr ( ( 𝜑𝑛 ∈ ( 1 ... 1 ) ) → ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) = 𝑀 )
34 33 csbeq1d ( ( 𝜑𝑛 ∈ ( 1 ... 1 ) ) → ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) / 𝑘 𝐴 = 𝑀 / 𝑘 𝐴 )
35 29 fveq2d ( 𝑛 ∈ ( 1 ... 1 ) → ( { ⟨ 1 , 𝐵 ⟩ } ‘ 𝑛 ) = ( { ⟨ 1 , 𝐵 ⟩ } ‘ 1 ) )
36 fvsng ( ( 1 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( { ⟨ 1 , 𝐵 ⟩ } ‘ 1 ) = 𝐵 )
37 11 5 36 sylancr ( 𝜑 → ( { ⟨ 1 , 𝐵 ⟩ } ‘ 1 ) = 𝐵 )
38 35 37 sylan9eqr ( ( 𝜑𝑛 ∈ ( 1 ... 1 ) ) → ( { ⟨ 1 , 𝐵 ⟩ } ‘ 𝑛 ) = 𝐵 )
39 28 34 38 3eqtr4rd ( ( 𝜑𝑛 ∈ ( 1 ... 1 ) ) → ( { ⟨ 1 , 𝐵 ⟩ } ‘ 𝑛 ) = ( { ⟨ 1 , 𝑀 ⟩ } ‘ 𝑛 ) / 𝑘 𝐴 )
40 10 12 19 27 39 fsum ( 𝜑 → Σ 𝑚 ∈ { 𝑀 } 𝑚 / 𝑘 𝐴 = ( seq 1 ( + , { ⟨ 1 , 𝐵 ⟩ } ) ‘ 1 ) )
41 9 40 syl5eq ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = ( seq 1 ( + , { ⟨ 1 , 𝐵 ⟩ } ) ‘ 1 ) )
42 15 37 seq1i ( 𝜑 → ( seq 1 ( + , { ⟨ 1 , 𝐵 ⟩ } ) ‘ 1 ) = 𝐵 )
43 41 42 eqtrd ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )