Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
2 |
|
sqge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) |
3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) |
4 |
|
resqcl |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
5 |
|
sqge0 |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) ) |
6 |
4 5
|
jca |
⊢ ( 𝐵 ∈ ℝ → ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) ) |
7 |
|
add20 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 0 ↔ ( ( 𝐴 ↑ 2 ) = 0 ∧ ( 𝐵 ↑ 2 ) = 0 ) ) ) |
8 |
3 6 7
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 0 ↔ ( ( 𝐴 ↑ 2 ) = 0 ∧ ( 𝐵 ↑ 2 ) = 0 ) ) ) |
9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
10 |
|
sqeq0 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 0 ↔ 𝐴 = 0 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) = 0 ↔ 𝐴 = 0 ) ) |
12 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
13 |
|
sqeq0 |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) |
15 |
11 14
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ↑ 2 ) = 0 ∧ ( 𝐵 ↑ 2 ) = 0 ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
16 |
8 15
|
bitr2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 0 ) ) |