| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 |
|
c0ex |
⊢ 0 ∈ V |
| 5 |
4
|
fvconst2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 6 |
|
ifid |
⊢ if ( 𝑘 ∈ 𝐴 , 0 , 0 ) = 0 |
| 7 |
5 6
|
eqtr4di |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 0 , 0 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 0 , 0 ) ) |
| 9 |
|
0cnd |
⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) |
| 10 |
1 2 3 8 9
|
zsum |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) ) |
| 11 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
| 12 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
| 13 |
11 12
|
ax-mp |
⊢ Fun ⇝ |
| 14 |
|
serclim0 |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
| 16 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 → ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) = 0 ) ) |
| 17 |
13 15 16
|
mpsyl |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) = 0 ) |
| 18 |
10 17
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 19 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
| 20 |
19
|
fdmi |
⊢ dom ℤ≥ = ℤ |
| 21 |
20
|
eleq2i |
⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
| 22 |
|
ndmfv |
⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 23 |
21 22
|
sylnbir |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 24 |
23
|
sseq2d |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ 𝐴 ⊆ ∅ ) ) |
| 25 |
24
|
biimpac |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
| 26 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
| 27 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 0 = Σ 𝑘 ∈ ∅ 0 ) |
| 28 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 0 = 0 |
| 29 |
27 28
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 30 |
25 26 29
|
3syl |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 31 |
18 30
|
pm2.61dan |
⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 32 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 33 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → 0 = 0 ) |
| 34 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 35 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 36 |
|
0cnd |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) |
| 37 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 38 |
4
|
fvconst2 |
⊢ ( 𝑛 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 39 |
37 38
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 40 |
39
|
adantl |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 41 |
33 34 35 36 40
|
fsum |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 42 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 43 |
42
|
ser0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 0 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 0 ) |
| 45 |
41 44
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 46 |
45
|
ex |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 47 |
46
|
exlimdv |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 48 |
47
|
imp |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 49 |
29 48
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 50 |
32 49
|
syl |
⊢ ( 𝐴 ∈ Fin → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 51 |
31 50
|
jaoi |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |