| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑅  Or  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 2 | 1 | supval2 | ⊢ ( 𝑅  Or  𝐴  →  sup ( ∅ ,  𝐴 ,  𝑅 )  =  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 3 |  | ral0 | ⊢ ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦 | 
						
							| 4 | 3 | biantrur | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 )  ↔  ( ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 ) ) ) | 
						
							| 5 |  | rex0 | ⊢ ¬  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 | 
						
							| 6 |  | imnot | ⊢ ( ¬  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧  →  ( ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 )  ↔  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 )  ↔  ¬  𝑦 𝑅 𝑥 ) | 
						
							| 8 | 7 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 )  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) | 
						
							| 9 | 4 8 | bitr3i | ⊢ ( ( ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑅  Or  𝐴  →  ( ( ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 11 | 10 | riotabidv | ⊢ ( 𝑅  Or  𝐴  →  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  ∅ ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  ∅ 𝑦 𝑅 𝑧 ) ) )  =  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 12 | 2 11 | eqtrd | ⊢ ( 𝑅  Or  𝐴  →  sup ( ∅ ,  𝐴 ,  𝑅 )  =  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) |