Step |
Hyp |
Ref |
Expression |
1 |
|
supadd.a1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
supadd.a2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
supadd.a3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
4 |
|
supaddc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
supaddc.c |
⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) } |
6 |
|
vex |
⊢ 𝑤 ∈ V |
7 |
|
oveq1 |
⊢ ( 𝑣 = 𝑎 → ( 𝑣 + 𝐵 ) = ( 𝑎 + 𝐵 ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 + 𝐵 ) ↔ 𝑧 = ( 𝑎 + 𝐵 ) ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + 𝐵 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 + 𝐵 ) ↔ 𝑤 = ( 𝑎 + 𝐵 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) ) |
12 |
9 11
|
syl5bb |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) ) |
13 |
6 12 5
|
elab2 |
⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
14 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
15 |
1 2 3
|
suprcld |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
18 |
1 2 3
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
19 |
|
suprub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
20 |
18 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
21 |
14 16 17 20
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
22 |
|
breq1 |
⊢ ( 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ( 𝑎 + 𝐵 ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
23 |
21 22
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
24 |
23
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
25 |
13 24
|
syl5bi |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
26 |
25
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
27 |
14 17
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ∈ ℝ ) |
28 |
|
eleq1a |
⊢ ( ( 𝑎 + 𝐵 ) ∈ ℝ → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) |
30 |
29
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) |
31 |
13 30
|
syl5bi |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
32 |
31
|
ssrdv |
⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
33 |
|
ovex |
⊢ ( 𝑎 + 𝐵 ) ∈ V |
34 |
33
|
isseti |
⊢ ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) |
35 |
34
|
rgenw |
⊢ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) |
36 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) |
37 |
2 35 36
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) |
38 |
13
|
exbii |
⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
39 |
|
n0 |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) |
40 |
|
rexcom4 |
⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
41 |
38 39 40
|
3bitr4i |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) |
42 |
37 41
|
sylibr |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
43 |
15 4
|
readdcld |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ) |
44 |
|
brralrspcev |
⊢ ( ( ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
45 |
43 26 44
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
46 |
|
suprleub |
⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ) → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
47 |
32 42 45 43 46
|
syl31anc |
⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
48 |
26 47
|
mpbird |
⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
49 |
32 42 45
|
suprcld |
⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
50 |
49 4 15
|
ltsubaddd |
⊢ ( 𝜑 → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
51 |
50
|
biimpar |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ) |
52 |
49 4
|
resubcld |
⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) ∈ ℝ ) |
53 |
|
suprlub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) ∈ ℝ ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) |
54 |
1 2 3 52 53
|
syl31anc |
⊢ ( 𝜑 → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) |
56 |
51 55
|
mpbid |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
57 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ∈ ℝ ) |
58 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
59 |
|
rspe |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
60 |
59 13
|
sylibr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) → 𝑤 ∈ 𝐶 ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) → 𝑤 ∈ 𝐶 ) |
62 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 = ( 𝑎 + 𝐵 ) ) |
63 |
32 42 45
|
3jca |
⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |
64 |
|
suprub |
⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
65 |
63 64
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
67 |
62 66
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
68 |
61 67
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
69 |
68
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
70 |
69
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
71 |
34 70
|
mpi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
72 |
71
|
adantlr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
73 |
57 58 72
|
lensymd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ¬ sup ( 𝐶 , ℝ , < ) < ( 𝑎 + 𝐵 ) ) |
74 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
75 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
76 |
58 74 75
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ↔ sup ( 𝐶 , ℝ , < ) < ( 𝑎 + 𝐵 ) ) ) |
77 |
73 76
|
mtbird |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ¬ ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
78 |
77
|
nrexdv |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ¬ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
79 |
56 78
|
pm2.65da |
⊢ ( 𝜑 → ¬ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
80 |
49 43
|
eqleltd |
⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) = ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∧ ¬ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) ) |
81 |
48 79 80
|
mpbir2and |
⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) = ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
82 |
81
|
eqcomd |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) = sup ( 𝐶 , ℝ , < ) ) |