| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supeq123d.a | ⊢ ( 𝜑  →  𝐴  =  𝐷 ) | 
						
							| 2 |  | supeq123d.b | ⊢ ( 𝜑  →  𝐵  =  𝐸 ) | 
						
							| 3 |  | supeq123d.c | ⊢ ( 𝜑  →  𝐶  =  𝐹 ) | 
						
							| 4 | 3 | breqd | ⊢ ( 𝜑  →  ( 𝑥 𝐶 𝑦  ↔  𝑥 𝐹 𝑦 ) ) | 
						
							| 5 | 4 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑥 𝐶 𝑦  ↔  ¬  𝑥 𝐹 𝑦 ) ) | 
						
							| 6 | 1 5 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝐶 𝑦  ↔  ∀ 𝑦  ∈  𝐷 ¬  𝑥 𝐹 𝑦 ) ) | 
						
							| 7 | 3 | breqd | ⊢ ( 𝜑  →  ( 𝑦 𝐶 𝑥  ↔  𝑦 𝐹 𝑥 ) ) | 
						
							| 8 | 3 | breqd | ⊢ ( 𝜑  →  ( 𝑦 𝐶 𝑧  ↔  𝑦 𝐹 𝑧 ) ) | 
						
							| 9 | 1 8 | rexeqbidv | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧  ↔  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝜑  →  ( ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 )  ↔  ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) ) | 
						
							| 11 | 2 10 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 )  ↔  ∀ 𝑦  ∈  𝐸 ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) ) | 
						
							| 12 | 6 11 | anbi12d | ⊢ ( 𝜑  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝐶 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐷 ¬  𝑥 𝐹 𝑦  ∧  ∀ 𝑦  ∈  𝐸 ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) ) ) | 
						
							| 13 | 2 12 | rabeqbidv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝐶 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 ) ) }  =  { 𝑥  ∈  𝐸  ∣  ( ∀ 𝑦  ∈  𝐷 ¬  𝑥 𝐹 𝑦  ∧  ∀ 𝑦  ∈  𝐸 ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) } ) | 
						
							| 14 | 13 | unieqd | ⊢ ( 𝜑  →  ∪  { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝐶 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 ) ) }  =  ∪  { 𝑥  ∈  𝐸  ∣  ( ∀ 𝑦  ∈  𝐷 ¬  𝑥 𝐹 𝑦  ∧  ∀ 𝑦  ∈  𝐸 ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) } ) | 
						
							| 15 |  | df-sup | ⊢ sup ( 𝐴 ,  𝐵 ,  𝐶 )  =  ∪  { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝐶 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐶 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝐶 𝑧 ) ) } | 
						
							| 16 |  | df-sup | ⊢ sup ( 𝐷 ,  𝐸 ,  𝐹 )  =  ∪  { 𝑥  ∈  𝐸  ∣  ( ∀ 𝑦  ∈  𝐷 ¬  𝑥 𝐹 𝑦  ∧  ∀ 𝑦  ∈  𝐸 ( 𝑦 𝐹 𝑥  →  ∃ 𝑧  ∈  𝐷 𝑦 𝐹 𝑧 ) ) } | 
						
							| 17 | 14 15 16 | 3eqtr4g | ⊢ ( 𝜑  →  sup ( 𝐴 ,  𝐵 ,  𝐶 )  =  sup ( 𝐷 ,  𝐸 ,  𝐹 ) ) |