Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| Assertion | supeq1d | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 2 | supeq1 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) |