Metamath Proof Explorer


Theorem supeq1i

Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1i.1 𝐵 = 𝐶
Assertion supeq1i sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 )

Proof

Step Hyp Ref Expression
1 supeq1i.1 𝐵 = 𝐶
2 supeq1 ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) )
3 1 2 ax-mp sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 )