Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supeq1i.1 | ⊢ 𝐵 = 𝐶 | |
Assertion | supeq1i | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | ⊢ 𝐵 = 𝐶 | |
2 | supeq1 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) | |
3 | 1 2 | ax-mp | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) |