Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supeq1i.1 | ⊢ 𝐵 = 𝐶 | |
| Assertion | supeq1i | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) |