Metamath Proof Explorer


Theorem supex

Description: A supremum is a set. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis supex.1 𝑅 Or 𝐴
Assertion supex sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V

Proof

Step Hyp Ref Expression
1 supex.1 𝑅 Or 𝐴
2 id ( 𝑅 Or 𝐴𝑅 Or 𝐴 )
3 2 supexd ( 𝑅 Or 𝐴 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )
4 1 3 ax-mp sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V