Metamath Proof Explorer


Theorem supex2g

Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supex2g ( 𝐴𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )

Proof

Step Hyp Ref Expression
1 df-sup sup ( 𝐵 , 𝐴 , 𝑅 ) = { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) }
2 rabexg ( 𝐴𝐶 → { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } ∈ V )
3 2 uniexd ( 𝐴𝐶 { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } ∈ V )
4 1 3 eqeltrid ( 𝐴𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )