Step |
Hyp |
Ref |
Expression |
1 |
|
suplem1pr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∪ 𝐴 ∈ P ) |
2 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
3 |
2
|
brel |
⊢ ( 𝑦 <P 𝑥 → ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) ) |
4 |
3
|
simpld |
⊢ ( 𝑦 <P 𝑥 → 𝑦 ∈ P ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
6 |
|
dfss3 |
⊢ ( 𝐴 ⊆ P ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
7 |
5 6
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → 𝐴 ⊆ P ) |
10 |
|
suplem2pr |
⊢ ( 𝐴 ⊆ P → ( ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
11 |
10
|
simpld |
⊢ ( 𝐴 ⊆ P → ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ) |
12 |
11
|
ralrimiv |
⊢ ( 𝐴 ⊆ P → ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ) |
13 |
10
|
simprd |
⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
14 |
13
|
ralrimivw |
⊢ ( 𝐴 ⊆ P → ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
15 |
12 14
|
jca |
⊢ ( 𝐴 ⊆ P → ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
16 |
9 15
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
17 |
|
breq1 |
⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑥 <P 𝑦 ↔ ∪ 𝐴 <P 𝑦 ) ) |
18 |
17
|
notbid |
⊢ ( 𝑥 = ∪ 𝐴 → ( ¬ 𝑥 <P 𝑦 ↔ ¬ ∪ 𝐴 <P 𝑦 ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑥 = ∪ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ) ) |
20 |
|
breq2 |
⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑦 <P 𝑥 ↔ 𝑦 <P ∪ 𝐴 ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝑥 = ∪ 𝐴 → ( ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ↔ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑥 = ∪ 𝐴 → ( ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ↔ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
23 |
19 22
|
anbi12d |
⊢ ( 𝑥 = ∪ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ∪ 𝐴 ∈ P ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) → ∃ 𝑥 ∈ P ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
25 |
1 16 24
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∃ 𝑥 ∈ P ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |