| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suplem1pr | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  P ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥 )  →  ∪  𝐴  ∈  P ) | 
						
							| 2 |  | ltrelpr | ⊢ <P   ⊆  ( P  ×  P ) | 
						
							| 3 | 2 | brel | ⊢ ( 𝑦 <P  𝑥  →  ( 𝑦  ∈  P  ∧  𝑥  ∈  P ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( 𝑦 <P  𝑥  →  𝑦  ∈  P ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥  →  ∀ 𝑦  ∈  𝐴 𝑦  ∈  P ) | 
						
							| 6 |  | dfss3 | ⊢ ( 𝐴  ⊆  P  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ∈  P ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥  →  𝐴  ⊆  P ) | 
						
							| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  P ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥  →  𝐴  ⊆  P ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  P ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥 )  →  𝐴  ⊆  P ) | 
						
							| 10 |  | suplem2pr | ⊢ ( 𝐴  ⊆  P  →  ( ( 𝑦  ∈  𝐴  →  ¬  ∪  𝐴 <P  𝑦 )  ∧  ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝐴  ⊆  P  →  ( 𝑦  ∈  𝐴  →  ¬  ∪  𝐴 <P  𝑦 ) ) | 
						
							| 12 | 11 | ralrimiv | ⊢ ( 𝐴  ⊆  P  →  ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦 ) | 
						
							| 13 | 10 | simprd | ⊢ ( 𝐴  ⊆  P  →  ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) | 
						
							| 14 | 13 | ralrimivw | ⊢ ( 𝐴  ⊆  P  →  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) | 
						
							| 15 | 12 14 | jca | ⊢ ( 𝐴  ⊆  P  →  ( ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 16 | 9 15 | syl | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  P ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 17 |  | breq1 | ⊢ ( 𝑥  =  ∪  𝐴  →  ( 𝑥 <P  𝑦  ↔  ∪  𝐴 <P  𝑦 ) ) | 
						
							| 18 | 17 | notbid | ⊢ ( 𝑥  =  ∪  𝐴  →  ( ¬  𝑥 <P  𝑦  ↔  ¬  ∪  𝐴 <P  𝑦 ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑥  =  ∪  𝐴  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 <P  𝑦  ↔  ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦 ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑥  =  ∪  𝐴  →  ( 𝑦 <P  𝑥  ↔  𝑦 <P  ∪  𝐴 ) ) | 
						
							| 21 | 20 | imbi1d | ⊢ ( 𝑥  =  ∪  𝐴  →  ( ( 𝑦 <P  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 )  ↔  ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑥  =  ∪  𝐴  →  ( ∀ 𝑦  ∈  P ( 𝑦 <P  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 )  ↔  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 23 | 19 22 | anbi12d | ⊢ ( 𝑥  =  ∪  𝐴  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( ∪  𝐴  ∈  P  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  ∪  𝐴 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  ∪  𝐴  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) )  →  ∃ 𝑥  ∈  P ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) | 
						
							| 25 | 1 16 24 | syl2anc | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  P ∀ 𝑦  ∈  𝐴 𝑦 <P  𝑥 )  →  ∃ 𝑥  ∈  P ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 <P  𝑦  ∧  ∀ 𝑦  ∈  P ( 𝑦 <P  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 <P  𝑧 ) ) ) |