Metamath Proof Explorer


Theorem supfil

Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion supfil ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴𝐵𝑥 } ∈ ( Fil ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sseq2 ( 𝑥 = 𝑦 → ( 𝐵𝑥𝐵𝑦 ) )
2 1 elrab ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴𝐵𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝐴𝐵𝑦 ) )
3 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
4 3 anbi1i ( ( 𝑦 ∈ 𝒫 𝐴𝐵𝑦 ) ↔ ( 𝑦𝐴𝐵𝑦 ) )
5 2 4 bitri ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴𝐵𝑥 } ↔ ( 𝑦𝐴𝐵𝑦 ) )
6 5 a1i ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴𝐵𝑥 } ↔ ( 𝑦𝐴𝐵𝑦 ) ) )
7 simp1 ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → 𝐴𝑉 )
8 simp2 ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → 𝐵𝐴 )
9 sseq2 ( 𝑦 = 𝐴 → ( 𝐵𝑦𝐵𝐴 ) )
10 9 sbcieg ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] 𝐵𝑦𝐵𝐴 ) )
11 7 10 syl ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → ( [ 𝐴 / 𝑦 ] 𝐵𝑦𝐵𝐴 ) )
12 8 11 mpbird ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → [ 𝐴 / 𝑦 ] 𝐵𝑦 )
13 ss0 ( 𝐵 ⊆ ∅ → 𝐵 = ∅ )
14 13 necon3ai ( 𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅ )
15 14 3ad2ant3 ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → ¬ 𝐵 ⊆ ∅ )
16 0ex ∅ ∈ V
17 sseq2 ( 𝑦 = ∅ → ( 𝐵𝑦𝐵 ⊆ ∅ ) )
18 16 17 sbcie ( [ ∅ / 𝑦 ] 𝐵𝑦𝐵 ⊆ ∅ )
19 15 18 sylnibr ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → ¬ [ ∅ / 𝑦 ] 𝐵𝑦 )
20 sstr ( ( 𝐵𝑤𝑤𝑧 ) → 𝐵𝑧 )
21 20 expcom ( 𝑤𝑧 → ( 𝐵𝑤𝐵𝑧 ) )
22 vex 𝑤 ∈ V
23 sseq2 ( 𝑦 = 𝑤 → ( 𝐵𝑦𝐵𝑤 ) )
24 22 23 sbcie ( [ 𝑤 / 𝑦 ] 𝐵𝑦𝐵𝑤 )
25 vex 𝑧 ∈ V
26 sseq2 ( 𝑦 = 𝑧 → ( 𝐵𝑦𝐵𝑧 ) )
27 25 26 sbcie ( [ 𝑧 / 𝑦 ] 𝐵𝑦𝐵𝑧 )
28 21 24 27 3imtr4g ( 𝑤𝑧 → ( [ 𝑤 / 𝑦 ] 𝐵𝑦[ 𝑧 / 𝑦 ] 𝐵𝑦 ) )
29 28 3ad2ant3 ( ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) ∧ 𝑧𝐴𝑤𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝐵𝑦[ 𝑧 / 𝑦 ] 𝐵𝑦 ) )
30 ssin ( ( 𝐵𝑧𝐵𝑤 ) ↔ 𝐵 ⊆ ( 𝑧𝑤 ) )
31 30 biimpi ( ( 𝐵𝑧𝐵𝑤 ) → 𝐵 ⊆ ( 𝑧𝑤 ) )
32 27 24 31 syl2anb ( ( [ 𝑧 / 𝑦 ] 𝐵𝑦[ 𝑤 / 𝑦 ] 𝐵𝑦 ) → 𝐵 ⊆ ( 𝑧𝑤 ) )
33 25 inex1 ( 𝑧𝑤 ) ∈ V
34 sseq2 ( 𝑦 = ( 𝑧𝑤 ) → ( 𝐵𝑦𝐵 ⊆ ( 𝑧𝑤 ) ) )
35 33 34 sbcie ( [ ( 𝑧𝑤 ) / 𝑦 ] 𝐵𝑦𝐵 ⊆ ( 𝑧𝑤 ) )
36 32 35 sylibr ( ( [ 𝑧 / 𝑦 ] 𝐵𝑦[ 𝑤 / 𝑦 ] 𝐵𝑦 ) → [ ( 𝑧𝑤 ) / 𝑦 ] 𝐵𝑦 )
37 36 a1i ( ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) ∧ 𝑧𝐴𝑤𝐴 ) → ( ( [ 𝑧 / 𝑦 ] 𝐵𝑦[ 𝑤 / 𝑦 ] 𝐵𝑦 ) → [ ( 𝑧𝑤 ) / 𝑦 ] 𝐵𝑦 ) )
38 6 7 12 19 29 37 isfild ( ( 𝐴𝑉𝐵𝐴𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴𝐵𝑥 } ∈ ( Fil ‘ 𝐴 ) )