| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ⊆  𝑥  ↔  𝐵  ⊆  𝑦 ) ) | 
						
							| 2 | 1 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  𝐵  ⊆  𝑥 }  ↔  ( 𝑦  ∈  𝒫  𝐴  ∧  𝐵  ⊆  𝑦 ) ) | 
						
							| 3 |  | velpw | ⊢ ( 𝑦  ∈  𝒫  𝐴  ↔  𝑦  ⊆  𝐴 ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑦  ∈  𝒫  𝐴  ∧  𝐵  ⊆  𝑦 )  ↔  ( 𝑦  ⊆  𝐴  ∧  𝐵  ⊆  𝑦 ) ) | 
						
							| 5 | 2 4 | bitri | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  𝐵  ⊆  𝑥 }  ↔  ( 𝑦  ⊆  𝐴  ∧  𝐵  ⊆  𝑦 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  𝐵  ⊆  𝑥 }  ↔  ( 𝑦  ⊆  𝐴  ∧  𝐵  ⊆  𝑦 ) ) ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  𝐴  ∈  𝑉 ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  𝐵  ⊆  𝐴 ) | 
						
							| 9 |  | sseq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝐴 ) ) | 
						
							| 10 | 9 | sbcieg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝐴 ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ( [ 𝐴  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝐴 ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  [ 𝐴  /  𝑦 ] 𝐵  ⊆  𝑦 ) | 
						
							| 13 |  | ss0 | ⊢ ( 𝐵  ⊆  ∅  →  𝐵  =  ∅ ) | 
						
							| 14 | 13 | necon3ai | ⊢ ( 𝐵  ≠  ∅  →  ¬  𝐵  ⊆  ∅ ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ¬  𝐵  ⊆  ∅ ) | 
						
							| 16 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 17 |  | sseq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  ∅ ) ) | 
						
							| 18 | 16 17 | sbcie | ⊢ ( [ ∅  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  ∅ ) | 
						
							| 19 | 15 18 | sylnibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ¬  [ ∅  /  𝑦 ] 𝐵  ⊆  𝑦 ) | 
						
							| 20 |  | sstr | ⊢ ( ( 𝐵  ⊆  𝑤  ∧  𝑤  ⊆  𝑧 )  →  𝐵  ⊆  𝑧 ) | 
						
							| 21 | 20 | expcom | ⊢ ( 𝑤  ⊆  𝑧  →  ( 𝐵  ⊆  𝑤  →  𝐵  ⊆  𝑧 ) ) | 
						
							| 22 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 23 |  | sseq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝑤 ) ) | 
						
							| 24 | 22 23 | sbcie | ⊢ ( [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝑤 ) | 
						
							| 25 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 26 |  | sseq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝑧 ) ) | 
						
							| 27 | 25 26 | sbcie | ⊢ ( [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  𝑧 ) | 
						
							| 28 | 21 24 27 | 3imtr4g | ⊢ ( 𝑤  ⊆  𝑧  →  ( [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦  →  [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦 ) ) | 
						
							| 29 | 28 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  ∧  𝑧  ⊆  𝐴  ∧  𝑤  ⊆  𝑧 )  →  ( [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦  →  [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦 ) ) | 
						
							| 30 |  | ssin | ⊢ ( ( 𝐵  ⊆  𝑧  ∧  𝐵  ⊆  𝑤 )  ↔  𝐵  ⊆  ( 𝑧  ∩  𝑤 ) ) | 
						
							| 31 | 30 | biimpi | ⊢ ( ( 𝐵  ⊆  𝑧  ∧  𝐵  ⊆  𝑤 )  →  𝐵  ⊆  ( 𝑧  ∩  𝑤 ) ) | 
						
							| 32 | 27 24 31 | syl2anb | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦  ∧  [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦 )  →  𝐵  ⊆  ( 𝑧  ∩  𝑤 ) ) | 
						
							| 33 | 25 | inex1 | ⊢ ( 𝑧  ∩  𝑤 )  ∈  V | 
						
							| 34 |  | sseq2 | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝑤 )  →  ( 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  ( 𝑧  ∩  𝑤 ) ) ) | 
						
							| 35 | 33 34 | sbcie | ⊢ ( [ ( 𝑧  ∩  𝑤 )  /  𝑦 ] 𝐵  ⊆  𝑦  ↔  𝐵  ⊆  ( 𝑧  ∩  𝑤 ) ) | 
						
							| 36 | 32 35 | sylibr | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦  ∧  [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦 )  →  [ ( 𝑧  ∩  𝑤 )  /  𝑦 ] 𝐵  ⊆  𝑦 ) | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  ∧  𝑧  ⊆  𝐴  ∧  𝑤  ⊆  𝐴 )  →  ( ( [ 𝑧  /  𝑦 ] 𝐵  ⊆  𝑦  ∧  [ 𝑤  /  𝑦 ] 𝐵  ⊆  𝑦 )  →  [ ( 𝑧  ∩  𝑤 )  /  𝑦 ] 𝐵  ⊆  𝑦 ) ) | 
						
							| 38 | 6 7 12 19 29 37 | isfild | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  { 𝑥  ∈  𝒫  𝐴  ∣  𝐵  ⊆  𝑥 }  ∈  ( Fil ‘ 𝐴 ) ) |