Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) |
2 |
1
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
3 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
5 |
2 4
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) ) |
7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
8 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → 𝐵 ⊆ 𝐴 ) |
9 |
|
sseq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) |
10 |
9
|
sbcieg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) |
11 |
7 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) |
12 |
8 11
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
13 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
14 |
13
|
necon3ai |
⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅ ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ¬ 𝐵 ⊆ ∅ ) |
16 |
|
0ex |
⊢ ∅ ∈ V |
17 |
|
sseq2 |
⊢ ( 𝑦 = ∅ → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅ ) ) |
18 |
16 17
|
sbcie |
⊢ ( [ ∅ / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅ ) |
19 |
15 18
|
sylnibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ¬ [ ∅ / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
20 |
|
sstr |
⊢ ( ( 𝐵 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) → 𝐵 ⊆ 𝑧 ) |
21 |
20
|
expcom |
⊢ ( 𝑤 ⊆ 𝑧 → ( 𝐵 ⊆ 𝑤 → 𝐵 ⊆ 𝑧 ) ) |
22 |
|
vex |
⊢ 𝑤 ∈ V |
23 |
|
sseq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤 ) ) |
24 |
22 23
|
sbcie |
⊢ ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤 ) |
25 |
|
vex |
⊢ 𝑧 ∈ V |
26 |
|
sseq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧 ) ) |
27 |
25 26
|
sbcie |
⊢ ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧 ) |
28 |
21 24 27
|
3imtr4g |
⊢ ( 𝑤 ⊆ 𝑧 → ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 → [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 → [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
30 |
|
ssin |
⊢ ( ( 𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤 ) ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
31 |
30
|
biimpi |
⊢ ( ( 𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤 ) → 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
32 |
27 24 31
|
syl2anb |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
33 |
25
|
inex1 |
⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
34 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) |
35 |
33 34
|
sbcie |
⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
36 |
32 35
|
sylibr |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
37 |
36
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) → ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
38 |
6 7 12 19 29 37
|
isfild |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ∈ ( Fil ‘ 𝐴 ) ) |