| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supfirege.1 | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 2 |  | supfirege.2 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | supfirege.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝐵 ) | 
						
							| 4 |  | supfirege.4 | ⊢ ( 𝜑  →  𝑆  =  sup ( 𝐵 ,  ℝ ,   <  ) ) | 
						
							| 5 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 7 | 6 1 2 3 4 | supgtoreq | ⊢ ( 𝜑  →  ( 𝐶  <  𝑆  ∨  𝐶  =  𝑆 ) ) | 
						
							| 8 | 1 3 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 9 | 3 | ne0d | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 10 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝐵  ∈  Fin  ∧  𝐵  ≠  ∅  ∧  𝐵  ⊆  ℝ ) )  →  sup ( 𝐵 ,  ℝ ,   <  )  ∈  𝐵 ) | 
						
							| 11 | 6 2 9 1 10 | syl13anc | ⊢ ( 𝜑  →  sup ( 𝐵 ,  ℝ ,   <  )  ∈  𝐵 ) | 
						
							| 12 | 4 11 | eqeltrd | ⊢ ( 𝜑  →  𝑆  ∈  𝐵 ) | 
						
							| 13 | 1 12 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 14 | 8 13 | leloed | ⊢ ( 𝜑  →  ( 𝐶  ≤  𝑆  ↔  ( 𝐶  <  𝑆  ∨  𝐶  =  𝑆 ) ) ) | 
						
							| 15 | 7 14 | mpbird | ⊢ ( 𝜑  →  𝐶  ≤  𝑆 ) |