| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supicc.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | supicc.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | supicc.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 4 |  | supicc.4 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 5 |  | supiccub.1 | ⊢ ( 𝜑  →  𝐷  ∈  𝐴 ) | 
						
							| 6 |  | iccssre | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵 [,] 𝐶 )  ⊆  ℝ ) | 
						
							| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ⊆  ℝ ) | 
						
							| 8 | 3 7 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 10 | 9 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 12 | 11 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ* ) | 
						
							| 13 | 3 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 14 |  | iccleub | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 15 | 10 12 13 14 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≤  𝐶 ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝑥  ≤  𝐶 ) | 
						
							| 17 |  | brralrspcev | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ≤  𝐶 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 18 | 2 16 17 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 19 | 8 5 | sseldd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 20 |  | suprlub | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝐷  ∈  ℝ )  →  ( 𝐷  <  sup ( 𝐴 ,  ℝ ,   <  )  ↔  ∃ 𝑧  ∈  𝐴 𝐷  <  𝑧 ) ) | 
						
							| 21 | 8 4 18 19 20 | syl31anc | ⊢ ( 𝜑  →  ( 𝐷  <  sup ( 𝐴 ,  ℝ ,   <  )  ↔  ∃ 𝑧  ∈  𝐴 𝐷  <  𝑧 ) ) |