Metamath Proof Explorer


Theorem supicclub

Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)

Ref Expression
Hypotheses supicc.1 ( 𝜑𝐵 ∈ ℝ )
supicc.2 ( 𝜑𝐶 ∈ ℝ )
supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
supicc.4 ( 𝜑𝐴 ≠ ∅ )
supiccub.1 ( 𝜑𝐷𝐴 )
Assertion supicclub ( 𝜑 → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐷 < 𝑧 ) )

Proof

Step Hyp Ref Expression
1 supicc.1 ( 𝜑𝐵 ∈ ℝ )
2 supicc.2 ( 𝜑𝐶 ∈ ℝ )
3 supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
4 supicc.4 ( 𝜑𝐴 ≠ ∅ )
5 supiccub.1 ( 𝜑𝐷𝐴 )
6 iccssre ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
8 3 7 sstrd ( 𝜑𝐴 ⊆ ℝ )
9 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
10 9 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
11 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
12 11 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
13 3 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) )
14 iccleub ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥𝐶 )
15 10 12 13 14 syl3anc ( ( 𝜑𝑥𝐴 ) → 𝑥𝐶 )
16 15 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐶 )
17 brralrspcev ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥𝐴 𝑥𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
18 2 16 17 syl2anc ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
19 8 5 sseldd ( 𝜑𝐷 ∈ ℝ )
20 suprlub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) ∧ 𝐷 ∈ ℝ ) → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐷 < 𝑧 ) )
21 8 4 18 19 20 syl31anc ( 𝜑 → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐷 < 𝑧 ) )