| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supicc.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | supicc.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | supicc.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 4 |  | supicc.4 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 5 |  | supiccub.1 | ⊢ ( 𝜑  →  𝐷  ∈  𝐴 ) | 
						
							| 6 |  | supicclub2.1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  𝑧  ≤  𝐷 ) | 
						
							| 7 |  | iccssxr | ⊢ ( 𝐵 [,] 𝐶 )  ⊆  ℝ* | 
						
							| 8 | 1 2 3 4 | supicc | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 9 | 7 8 | sselid | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ* ) | 
						
							| 10 | 3 7 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ* ) | 
						
							| 11 | 10 5 | sseldd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 12 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  ℝ* ) | 
						
							| 13 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  𝐷  ∈  ℝ* ) | 
						
							| 14 | 12 13 | xrlenltd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ≤  𝐷  ↔  ¬  𝐷  <  𝑧 ) ) | 
						
							| 15 | 6 14 | mpbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ¬  𝐷  <  𝑧 ) | 
						
							| 16 | 15 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑧  ∈  𝐴 𝐷  <  𝑧 ) | 
						
							| 17 | 1 2 3 4 5 | supicclub | ⊢ ( 𝜑  →  ( 𝐷  <  sup ( 𝐴 ,  ℝ ,   <  )  ↔  ∃ 𝑧  ∈  𝐴 𝐷  <  𝑧 ) ) | 
						
							| 18 | 16 17 | mtbird | ⊢ ( 𝜑  →  ¬  𝐷  <  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 19 | 9 11 18 | xrnltled | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ≤  𝐷 ) |