Metamath Proof Explorer


Theorem supiccub

Description: The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019)

Ref Expression
Hypotheses supicc.1 ( 𝜑𝐵 ∈ ℝ )
supicc.2 ( 𝜑𝐶 ∈ ℝ )
supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
supicc.4 ( 𝜑𝐴 ≠ ∅ )
supiccub.1 ( 𝜑𝐷𝐴 )
Assertion supiccub ( 𝜑𝐷 ≤ sup ( 𝐴 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 supicc.1 ( 𝜑𝐵 ∈ ℝ )
2 supicc.2 ( 𝜑𝐶 ∈ ℝ )
3 supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
4 supicc.4 ( 𝜑𝐴 ≠ ∅ )
5 supiccub.1 ( 𝜑𝐷𝐴 )
6 iccssre ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
8 3 7 sstrd ( 𝜑𝐴 ⊆ ℝ )
9 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
10 9 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
11 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
12 11 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
13 3 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) )
14 iccleub ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥𝐶 )
15 10 12 13 14 syl3anc ( ( 𝜑𝑥𝐴 ) → 𝑥𝐶 )
16 15 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐶 )
17 brralrspcev ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥𝐴 𝑥𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
18 2 16 17 syl2anc ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
19 8 4 18 5 suprubd ( 𝜑𝐷 ≤ sup ( 𝐴 , ℝ , < ) )